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Abstract 

       

We discuss in this paper the existence and uniqueness of solutions for  boundary 

value problem 
 

                          ( ) , ( ) ,
c q
D u t f t u t   

                         (0) ( ) ,a u b u T c   
 

in a Banach space. Under certain conditions on  f ,  the existence of solutions is 

obtained by applying Banach fixed point theorem and Schaefer's fixed point 

theorem.  
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1. Introduction 

 

     Fractional calculus is a discipline to which many researchers are dedicating 

their time, perhaps because of its demonstrated applications in various fields of 

science and engineering [16]. In particular, the existence of solutions to fractional 

boundary value problems is currently under strong research[3]. 

     The q-difference calculus or quantum calculus is an old subject that was 

initially developed by Jackson [9,10], Basic definitions and properties of q-

difference calculus can be found in the book [11].  

     The fractional q-difference calculus had its origin in the works by Al-Salam [2] 

and Agarwal [1]. More recently, maybe due to the explosion in research within 

the fractional differential calculus setting, new developments in this theory of 

fractional q-difference calculus were made, e.g., q-analogues of the integral and 

differential fractional operators properties such as Mittage-Leffler function [17] , 

just to mention some. 

     Very recently some basic theory for the initial value problems of fractional 

differential equations involving Riemann-Liouville differential operator has been 

discussed by Lakshmikantham and Vatsala [12,13]. Some existence results were 

given for the problem (1)-(2) with  1q   by [14] and 1, 1q    by Tisdell in 

[19].  

     In this paper, we present existence results for the problem  

 

 ( ) , ( ) ,
c q
D u t f t u t   for each    0, , 0 1, 0 1,t I T q              (1) 

  (0) ( ) ,a u b u T c                                                 (2) 

where c q
D 

 is the Caputo fractional q-derivative,  : 0,f T   , is a 

continuous function, , , ,a b c are real constants with 0.a b   In Section 3, we 

give two results, one based on Banach fixed point theorem (Theorem 3.1) and 

another one based on Schaefer's fixed point theorem (Theorem 3.2).  

2. Preliminaries 
 

In this section, we introduce notations, definitions, and preliminary facts which 

are used throughout this paper. By  ,C I  we denote the Banach space of all 

continuous functions from I  into  with the norm  

                              : sup ( ) : .u u t t I
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      Let   1,0q  defined by [11]   
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Note that, if 0b  then .)(  aa   The q-gamma function is defined by 
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and satisfies   )()1( xxx qqq  . 

The q-derivative of a function  ( )f x   is here defined by  

              

( ) ( ) ( )
( ) ,

( 1)

q

q

q

d f x f qx f x
D f x

d x q x


 


 

and q-derivatives of higher order by 

           
1

( ) 0,
( )

( ) .

n

q n

q q

f x if n
D f x

D D f x if n


 


 

The q-integral of a function f defined in the interval  b,0  is given by 

          

 
00

( ) (1 ) ( ) , 0 1, 0,
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n

f t d t x q f xq q q x b




     . 

If   ba ,0  and f defined in the interval  b,0 , its integral from a  to b  is 

defined by  
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Similarly as done for derivatives, it can be defined an operator n

qI , namely,  

          
)())(( 0 xfxfIq    and  1( )( ) ( )( ), .n n

q q qI f x I I f x n   

The fundamental theorem of calculus applies to these operators 
qI  and 

qD , i.e.,  

                    
),())(( xfxfID qq   

and if f  is continuous at 0x , then  

                   
).0()())(( fxfxfDI qq   

Basic properties of the two operators can be found in the book [11]. We now point 

out three formulas that will be used later (
qi D denotes the derivative with respect 

to variable i  ) [6]  

              ,)()( )()( 
stasta                                                                  

          
  ,)()( )1()(    ststD qqt                                                                  

       

).,(),()(),(
00

xqxftdtxfDxtdtxfD q

x

qx

x

qqx 







                                       

Remark 2.1. [6] We note that if 0  and tba  , then )()( )()(  btat  . 

Definition 2.1.[18]  Let 0  and f  be a function defined on  1,0 . The 

fractional q-integral of the Riemann–Liouville type is )()()( 0 xfxfIqRL  and  

 ( 1)1
( )( ) ( ) ( ) , , 0,1

( )

x

RL q q

q a

I f x x qt f t d t x  


    
  . 

Definition 2.2.[18] The fractional q-derivative of the Riemann–Liouville type of 

order 0  is defined by )()()( 0 xfxfDqRL  and 

    0),()()()(    xfIDxfD qqqRL , 

where    is the smallest integer greater than or equal to . 
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Definition 2.3.[18] The fractional q-derivative of the Caputo type of order 0  

is defined by  

    0),()()()(    xfDIxfD qqqC , 

where    is the smallest integer greater than or equal to . 

Lemma 2.1.[18]  Let 0,   and f be a function defined on  1,0 . Then, the 

next formulas hold: 

1. ),)(()()( xfIxfII qqq

   

2. ( )( ) ( ).C q qD I f x f x    

Theorem 2.1.[18] Let 0  and p be a positive integer. Then, the following 

equality holds: 

1

0

( )( ) ( )( ) ( )(0).
( 1)

p kp
p p k

RL q RL q q q q

k q

x
I D f x D I f x D f

k p


 



 



 
   

  

Theorem 2.2.[18] Let 0x   and \  . Then, the following equality holds: 
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3. Existence of solutions 
 

Let us start by defining what we mean by a solution of the problem (1)-(2). 

Definition 3.1.[14] A function   1 0, ,u C T  is said to be a solution of (1)-

(2) if u satisfies the equation  ( ) , ( )
c q
D u t f t u t   on I , and the condition 

(0) ( )a u b u T c  . 

      For the existence of solutions for the problem (1)-(2), we need the following 

auxiliary lemma. 

Lemma 3.1.[14] Let 0 1  , 0 1q   and let  : 0,y T   be continuous. 

A function u  is a solution of fractional q-integral equation 
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( 1)
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u t u t qs y s d s





  


  

if and only if u  is a solution of the initial value problem for the fractional q-

differential equation 

 ( ) ( ), 0, ,
c q
D u t y t t T    

                                          
0

(0)u u . 

    As a consequence of lemma 3.1 we have the following result which is useful in 

what follows. 

Lemma 3.2.[14] Let 0 1  , 0 1q   and let  : 0,y T   be continuous. 

A function u  is a solution of the fractional q-integral equation 
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if and only if u  is a solution of the fractional BVP 

 ( ) ( ) , 0, ,
c q
D u t y t t T    

                                       (0) ( ) .a u b u T c   

     Our first result is based on Banach fixed point theorem. 

Theorem 3.1.[18] Assume that: 

  

(H1) There exists a constant 0K   such that 

   1 2 1 2
, ,f t u f t u K u u   , for each t I , and all 

1 2
,u u  . 

If                       
 

1

1,
1

q

b
KT

a b





 
   


 

                                                               (3)      

then the BVP (1)-(2) has a unique solution on  0,T . 
 

     Proof. Transform the problem (1)-(2) into a fixed point problem. Consider the  

operator 

     : 0, , 0, ,F C T C T  

defined by 

   
( 1)
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                   (4)    

 

Clearly, the fixed point of the operator F  are solution of the problem (1)-(2). We 

 shall use the  Banach contraction  principle to prove that  F  defined by (4) has a 

 fixed point. We shall show that F  is a contraction.  
 

      Let   1 2
, 0, ,x x C T . Then, for each  t I  we have          

     
( 1)

1 2 1 2
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Consequently by (3) F  is a contraction. As a consequence of Banach fixed point 

theorem, we deduce that F  has a fixed point which is a solution of the problem 

(1)-(2). 

      The second result is based on Schaefer's fixed point theorem. 

 

Theorem 3.2. Assume that: 

(H2) The function  : 0,f T    is continuous. 

(H3) There exists a constant 0M   such that 

 ,f t u M  for each t I  and all u  . 

     Then the BVP (1)-(2) has at least one solution on  0,T . 

     Proof. We shall use Schaefer's fixed point theorem to prove that F  defined by 

(4) has a fixed point. The proof will be given in several steps. 

     Step 1. F  is continuous. 

     Let  n
u  be a sequence such that 

n
u u  in   0, ,C T . Then for each 

 0,t T  
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Since f  is a continuous function, we have 

   

   1 , ( ) , ( )

0
( 1)

n

n

q

b
T f u f u

a b
F u F u









 
        

  
 

  as  .n   

     Step 2: F  maps bounded sets into bounded sets in   0, ,C T . 

     Indeed, it is enough to show that for any 0  , there exist a positive constant 

r  such that for each    0, , :u B u C T u 


    , we have 

 F u r

 . 

By (H3) we have for each  0,t T , 
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Thus 

       
   

( ) : .
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      Step 3. F  maps bounded sets into equicontinuous sets of   0, ,C T . 

      Let  1 2 1 2
, 0, , ,t t T t t B   be bounded set of   0, ,C T  as in step 2, 

and let u B . Then  
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As 
2 1

t t , the right-hand side of the above inequality tends to zero. As a 

consequence of Step 1 to 3 together with the Arzelá-Ascoli theorem, we can 

conclude that      : 0, , 0, ,F C T C T  is continuous and completely 

continuous. 

    Step 4. A priori bounds. 

    Now it remains to show that the set 

    , : for some 0 1u C I u F u        

is bounded. 

Let u  , then  u F u  for some 0 1  . Thus, for each t I  we 

have  
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This implies by (H3) that for t I  we have 
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Thus for every  0,t T , we have 

 
   

( ) : .
1 1

q q
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     This shows that the set   is bounded. As a consequence of Schaefer's fixed 

point theorem, we deduce that F  has a fixed point which is a solution of the 

problem (1)-(2). 
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