MATH 331 (SB) First Exam S.W.P (A) Sat. 14/3/1429H

	Name: C.N:
0.0	.1 :Write the following:(1mark)
De	finition 1 The period of the graphs of
	$y = A\sin(Bx - C) + D \text{ and } y = A\cos(Bx - C) + D $ (1)
is	$\left.rac{2\pi}{B} ight $.
0.0 a)	.2 :Define the function $f(x) = x^3 + 2x^2 - 5x$ and $g(x) = x^3 + x$, then Evaluate the following:
	1. $f + g$, $f(-2)$, $f(g(1))$. 2. The derivative of $f(x)$.
	3. The integration of $(g(x) + xe^{x^2} - \tan x)$.
	4. $\lim_{x\to 1} f(x+2)$.
b) 	Find the roots of the functions f and g , and determine how many times each of them intersects the x-axis.
 c)	Find the greatest common divisor of the functions f and g
0.0	.3 : Solve each of the following: 1. $\cos^2 x = \frac{1}{2}$
2	2. $(e^t y + te^t y) dt + (te^t + 2) dy = 0$
	[Hint: rewrite the ODE into the form $\frac{dy}{dt} = f(t, y)$]

then plot three solutions generated with constants (1,2,3) in different colors.

Now, solve the ODE again with the initial value y(0) = -1

3. The system

$$x - y = 5, 2x + y = 1$$

0.0.4 :approximate the following definite integral using the midpoint method (use Help).

$$\int_0^{\frac{\pi}{2}} x \cos x dx$$

0.0.5 :Plot the following:

1.
$$(x-4)^2 + y^2 = 16$$
 with $-5 \le x \le 10, -5 \le y \le 10$.