Important Equations For Phys110 (Phys101)- A. Z. ALZAHRANI

(1) Units & Measurements

Physical Quantity	Name	Symbol
Length	meter	m
Mass	kilogram	kg
Time	second	s
Electric current	Ampere	A
Thermodynamic temperature	Kelvin	K
Amount of substance	mole	mol
Luminous intensity	candela	$_{ m cd}$

(2) Vectors

Vector addition	$\mathbf{A} + \mathbf{B} = (A_x + B_x) \hat{\mathbf{i}} + (A_y + B_y) \hat{\mathbf{j}} + (A_z + B_z) \hat{\mathbf{k}}$
Vector subtraction	A - B = $(A_x - B_x)$ î + $(A_y - B_y)$ j + $(A_z - B_z)$ ^k
Dot (scalar) product	$\mathbf{A} \cdot \mathbf{B} = AB \cos \theta$ $\mathbf{A} \cdot \mathbf{B} = A_x B_x + A_y B_y + A_z B_z$ $\mathbf{A} \cdot \mathbf{B} = \mathbf{B} \cdot \mathbf{A}$
Cross (vector) product	$\mathbf{A} \times \mathbf{B} = AB \sin \theta \hat{\mathbf{n}}$ $\mathbf{A} \times \mathbf{B} = (A_y B_z - A_z B_y) \hat{\mathbf{i}} + (A_z B_x - A_x B_z) \hat{\mathbf{j}} + (A_x B_y - A_y B_x) \hat{\mathbf{k}}$ $\mathbf{A} \times \mathbf{B} = -\mathbf{B} \times \mathbf{A}$
Special cases	If $\mathbf{A} \cdot \mathbf{B} = 0$ then \mathbf{A} and \mathbf{B} are perpendicular If $\mathbf{A} \times \mathbf{B} = 0$ then \mathbf{A} and \mathbf{B} are parallel or anti-parallel If $ \mathbf{A} + \mathbf{B} = \mathbf{A} - \mathbf{B} $ then $\mathbf{A} \cdot \mathbf{B} = 0$

(3) Motion along a straight line

Displacement	$\Delta x = x_2 - x_1$
Average Speed	$\bar{v} = \frac{\Delta x}{\Delta t}$
	$\bar{v} = \frac{1}{2}(v + v_0)$
Average acceleration	$\bar{a} = \frac{\Delta v}{\Delta t}$
Equations of motion (a=0)	$v = v_0$
	$x = x_0 + v_0 t$
Equations of motion (a=constant)	$v = v_0 + at$
	$x = x_0 + v_0 t + \frac{1}{2} a t^2$ $v^2 = v_0^2 = 2a(x - x_0)$
	$v^2 = v_0^2 = 2a(x - x_0)$

Equation of motion (a = -g)	Same as equations of motion with
	constant a by replacing a with -g

(4) Motion in 2 and 3 dimensions

Position vector	$\mathbf{r} = x\mathbf{i} + y\mathbf{j} + z\mathbf{k}$
Velocity vector	$\mathbf{v} = v_x \mathbf{i} + v_y \mathbf{j} + v_z \mathbf{k}$
Acceleration vector	$\mathbf{a} = a_x \mathbf{i} + a_y \mathbf{j} + a_z \mathbf{k}$
Initial velocities	$v_{0x} = v_0 \cos \theta_0$ and $v_{0y} = v_0 \sin \theta_0$.
Vertical motion	$y - y_0 = v_{0y}t - \frac{1}{2}gt^2$ = $(v_0 \sin \theta_0)t - \frac{1}{2}gt^2$,
	$v_y^2 = (v_0 \sin \theta_0)^2 - 2g(y - y_0).$
Horizontal motion	$x - x_0 = (v_0 \cos \theta_0)t.$
Equation of motion	$y = (\tan \theta_0)x - \frac{gx^2}{2(\nu_0 \cos \theta_0)^2}$
Horizontal range	$R = \frac{v_0^2}{g} \sin 2\theta_0.$
Maximum range	$R = \frac{v_0^2}{g}$
Maximum height	$H = \frac{v_0^2 \sin^2 \theta_0}{2g}$

(5-1) Forces & Motion: Linear Motion

Newton's Second Law	$\vec{F} = m\vec{a}$
Newton's Third Law	$\vec{F}_{A \to B} = \vec{F}_{B \to A}$
Frictional Force	$\vec{F}_f = \mu \vec{N}$
Weight	$\vec{W} = m\vec{g}$

(5-2) Force & Motion: Circular Motion

Tangential Velocity	$v = \omega R$
	$\omega = 2\pi f = 2\pi \frac{1}{T}$
Frequency	$f = \frac{1}{T}$
Centripetal Acceleration	$a_R = \frac{v^2}{r} = \omega^2 r$
Centripetal Force	$F_{centripetal} = m \frac{v^2}{r} = m \omega^2 r$
Centrifugal Force	$F_{centrifugal} = m \frac{v^2}{r} = m \omega^2 r$
Newton's Law of Universal Gravitation	$F = G \frac{m_1 m_2}{r^2}$

(6) Work & Energy

Work	$W = F x \cos \theta$
Kinetic Energy	$KE = \frac{1}{2}mv^2$
Work-Energy Theorem	$W = \frac{1}{2}mv_2^2 - \frac{1}{2}mv_1^2$
Gravitational Potential Energy	$PE_{gravitational} = mgy$
Elastic Potential Energy	$PE_{elastic} = \frac{1}{2}kx^2$
Power	$P = \frac{W}{T}$

(7) Momentum & Collisions

Linear Momentum	$\vec{p} = m\vec{v}$
Newton's Second Law	$\sum \vec{F} = \frac{\Delta \vec{p}}{\Delta t}$
Conservation of Momentum	$m_A \vec{v_A} + m_B \vec{v_B} = m_A \vec{v_A} + m_B \vec{v_B}$
Impulse	$F\Delta t$
Elastic Collision	$\frac{1}{2}m_A v_A^2 + \frac{1}{2}m_B v_B^2 = \frac{1}{2}m_A v_A^{'2} + \frac{1}{2}m_B v_B^{'2}$
Inelastic Collision	$m_A \vec{v_A} + m_B \vec{v_B} = (m_A + m_B) \vec{v'}$
Center of Mass	$x_{CM} = \frac{\sum_{i} m_{i} x_{i}}{\sum_{i} m_{i}}$

(7) Rotational Motion

Angular Displacement	$\theta = \frac{l}{R}$
Angular Velocity	$\omega = \frac{v}{R}$
Angular Acceleration	$\alpha = \frac{a}{R}$
Centripetal Acceleration	$a_c = \omega^2 R$
Equations of motion $(\alpha=0)$	$\omega = \omega_0$
	$\theta = \theta_0 + \omega_0 t$
Equations of motion (α =constant)	$\omega = \omega_0 + \alpha t$
	$\theta = \theta_0 + \omega_0 t + \frac{1}{2} \alpha t^2$
	$\theta = \theta_0 + \omega_0 t + \frac{1}{2} \alpha t^2$ $\omega^2 = \omega_0^2 = 2\alpha (\theta - \theta_0)$
Torque	$\tau = rF \sin \theta$
Moment of Inertia	$I = mR^2$