

# FINAL EXAM

## **INTRODUCTION TO ELECTRODYNAMICS I (PHYS 331)**

### Fall 2010-2011

Student's Name:

Student's Number: .....

| Question | Mark |  |
|----------|------|--|
| A1       | 5    |  |
| A2       | 5    |  |
| A3       | 6    |  |
| A4       | 6    |  |
| B1       | 6    |  |
| B2       | 6    |  |
| B3 or B4 | 6    |  |
| Total    |      |  |

Del operator in Spherical Coordinates  

$$\vec{\nabla}f = \frac{\partial f}{\partial r}\hat{r} + \frac{1}{r}\frac{\partial f}{\partial \theta}\hat{\theta} + \frac{1}{r\sin\theta}\frac{\partial f}{\partial \theta}\hat{\theta}$$

$$\vec{\nabla} \cdot \vec{A} = \frac{1}{r^2}\frac{\partial}{\partial r}(r^2A_r) + \frac{1}{r\sin\theta}\frac{\partial}{\partial \theta}(\sin\theta A_{\theta}) + \frac{1}{r\sin\theta}\frac{\partial A_{\theta}}{\partial \theta}$$

$$\vec{\nabla} \times \vec{A} = \frac{1}{r\sin\theta}\left[\frac{\partial}{\partial \theta}(\sin\theta A_{\theta}) - \frac{\partial A_{\theta}}{\partial \theta}\right]\hat{r} + \frac{1}{r\sin\theta}\left[\frac{\partial A_r}{\partial \theta} - \sin\theta \frac{\partial}{\partial r}(r A_{\theta})\right]\hat{\theta} + \frac{1}{r}\left[\frac{\partial}{\partial r}(r A_{\theta}) - \frac{\partial A_r}{\partial \theta}\right]\hat{\theta}$$
Laplacian operator in Spherical Coordinates  

$$\nabla^2 V = \frac{1}{r^2}\frac{\partial}{\partial r}\left(r^2\frac{\partial V}{\partial r}\right) + \frac{1}{r^2}\frac{\partial}{\sin\theta}\frac{\partial}{\partial \theta}\left(\sin\theta \frac{\partial V}{\partial \theta}\right) + \frac{1}{r^2}\frac{\partial^2 V}{\sin^2\theta}\frac{\partial^2 V}{\partial \theta^2}$$
Laplacian operator in Cylindrical Coordinates  

$$\nabla^2 V = \frac{1}{r}\frac{\partial}{\partial r}\left(r\frac{\partial V}{\partial r}\right) + \frac{1}{r^2}\frac{\partial^2 V}{\partial \theta^2} + \frac{\partial^2 V}{\partial z^2}$$

١

#### PART [A]: SOLVE ALL THESE QUESTIONS.

A1 [5 MARKS] You are given vectors  $\vec{a} = 2\hat{i} + \hat{j}$  and  $\vec{b} = 3\hat{i} - 4\hat{j}$ . A third vector  $\vec{c}$  in the *xy*-plane is normal to  $\vec{a}$  and its scalar product with  $\vec{b}$  is 11. Find the vector  $\vec{c}$ .

A2 [5 MARKS] Evaluate the line integral of the vector function

$$\vec{A}(x,y,z) = xy\,\hat{\boldsymbol{\iota}} + x^2y\,\hat{\boldsymbol{j}} + z\,\hat{\boldsymbol{k}}\,,$$

from point **a** to **b** using the path shown in the figure.

**A3** [6 MARKS] Find the magnitude of the **electric field** and **the potential** inside a solid sphere of radius *R* and volume charge density of the form (considering the potential is zero at infinity)

$$\rho = \frac{k r}{R}.$$

A4 [6 MARKS] The electric potential in some spherical region is found to be

$$V = \frac{a}{r^2},$$

where *a* is an arbitrary constant. Find the **electric field**  $\vec{E}$  and the **charge density**  $\rho$ .

5

y

3

 $\frac{1}{a}$ 

#### PART [B]: SOLVE ONLY THREE QUESTIONS (B1 AND B2 ARE COMPULSORY)

**B1** [6 MARKS] A one-dimensional conductor lies along the positive x-axis. The conductor is grounded (V = 0 V) at x = 2 m and at x = 10 m is kept at a constant potential of 160 V. Use Laplacian method to find the **potential** and **electric field** at x = 4 m.

**B2** [6 MARKS] A sphere of radius *R* carries a polarization of the form

$$\vec{P} = b r \hat{r}$$

where *b* is a constant. (i) Calculate the bound charges  $\rho_b$  and  $\sigma_b$ . (ii) Find the electric field inside the sphere.

**B3** [6 MARKS] Using the fact that the charge density  $\rho$  in a polarized material is the summation of the bound  $\rho_b$  and free  $\rho_f$  charges (i.e  $\rho = \rho_b + \rho_f$ ), show that the electric displacement field  $\vec{D}$  is defined as

$$\vec{D} = \varepsilon_0 \, \vec{E} + \vec{P}$$

where  $\vec{E}$  is the electric field and  $\vec{P}$  is the polarization.

**B3** [6 MARKS] A cable of a linear charge density  $\lambda$  is entirely surrounded by an insulating material of dielectric constant  $\varepsilon$ . Find (i) the susceptibility  $\chi_e$ , (ii) the electric displacement field, and (iii) the polarization [Hint: use the results of (i) and (ii)].