Solution

1. A proton, moving with a speed of $4 \times 10^{6} \mathrm{~m} / \mathrm{s}$ through a magnetic field of 1.15 T , experiences a magnetic force of $6.4 \times 10^{-13} \mathrm{~N}$. Determine the angle between the proton's velocity and the magnetic field.

The magnetic force is defined as

$$
\vec{F}=q \vec{v} \times \vec{B}
$$

Hence the magnitude of the magnetic field is given as

$$
F=q v B \sin \theta
$$

Therefore the angle is

$$
\begin{gathered}
\sin \theta=\frac{F}{q v B}=\frac{6.4 \times 10^{-13}}{1.6 \times 10^{-19} \times 4 \times 10^{6} \times 1.15}=0.869 \\
\theta=60.4^{0}
\end{gathered}
$$

1. A 2 eV proton rotates in a circle, of radius 4.2 cm , under the influence of a uniform magnetic field. Calculate the magnitude of the magnetic field.

The radius of the curvature is

$$
R=\frac{m v}{q B} \quad \rightarrow \quad B=\frac{m v}{q R}
$$

From the kinetic energy we get

$$
K=\frac{1}{2} m v^{2} \rightarrow \quad v=\sqrt{\frac{2 K}{m}}=\sqrt{\frac{2 \times 2 \times 1.6 \times 10^{-19}}{1.67 \times 10^{-27}}}=1.96 \times 10^{4} \mathrm{~m} / \mathrm{s}
$$

Therefore the magnitude of the magnetic field is

$$
B=\frac{m v}{q R}=\frac{1.67 \times 10^{-27} \times 1.96 \times 10^{4}}{1.6 \times 10^{-19} \times 4.2 \times 10^{-2}}=4.9 \mathrm{mT}
$$

