King Abdulaziz University PHYSICS 202: CA		Faculty of Science Summer term 2010	Department of Physics Quiz#3	
Answers				
1. A 10 Ω resistor is c (a) 60 A	connected to a potenti (b) 1.67 A	al of 6 V. The current p (c) 0.6 A	bassing through the re (d) 10 A	sistor is: (e) 5 A
 2. A cylindrical wire (a) 6.4×10³ A/m² 	of radius 10 mm has (b) 6.4×10 ⁻³ A/m ²	a current of 2 A. The c (c) 2×10 ⁴ A/m ²	urrent density in the v (d) 0.2 A/m ²	vire is: (e) 2 A/m ²
3. A wire of length 5 cm and cross-sectional area 2 mm² is connected to a potential of 12 V. If the current passing through the wire is 2 A, the resistivity of the wire (in SI units) is:(a) 15(b) 2.4 (c) 15×10^4 (d) 2.4×10^4 (e) 2.4×10^4				
4. The power dissipation rate through a 5 Ω resistor is 3.2 W, the potential difference across the				
resistor is: (a) 16 V	(b) 0.64 V	(c) 4 V	(d) 1.56 V	(e) 1.25 V
5. The electric field inside a cylindrical wire of radius 1.2 mm is 0.1 V/m. If the current in the wire is measured to be 1(A, the can dustivity of the wire (in SI smits) is:				
(a) 2.8×10 ⁻⁸	(b) 3.5×10 ⁷	(c) 3.5×10 ⁻⁷	(d) 2.8×10 ⁸	(e) 3.5×10 ²
6. A battery delivers 0.8 W to a 5 M Ω resistor. The number of electrons passing through the				
(a) 3.2×10 ⁸	(b) 3.2×10 ¹⁶	(c) 2×10 ⁸	(d) 2×10 ¹⁶	(e) 1.6×10 ⁻¹⁹
7. The direction of th (a) parallel to E	ne drift velocity of ele (b) normal to E	ctrons v d is: (c) 45° to E	(d) opposite to E	(e) 30º to E
8. The internal resist (a) 1Ω	ance of an ideal batte (b) 1.5 Ω	ery of ε=1 V is: (c) 2 Ω	(d) 2.5 Ω	(e) zero
9. As shown in Fig. 1 (a) 10 Ω	l, the equivalent resi s (b) 15 Ω	stance is: (c) 20 Ω	(d) 25 Ω	(e) 30 Ω
10. As shown in Fig. (a) 12 V	2, the potential diffe (b) 8 V	rence across R ₃ is: (c) 6 V	(d) 18 V	(e) 3 V
	10 Ω •••	 I	R ₁ =6 Ω	
R ₂ =8 Ω	R ₃ =2 Ω		R ₂ =3 Ω	╧
R5=	=6 Ω		ε=12 V	R ₃ =4 Ω
Fi	ig. 1	:	Fig. 2	