King Abdulaziz University PHYSICS 202: CA		Faculty of Science Summer term 2010	Department of Physics Quiz#2	
		Answers		
0 1		are separated by 6 cm. from q2 where the third (c) 3 cm	0 1	
2. The number of ele (a) 2×10 ⁶	ctrons in a metal o (b) 2×10 ¹⁰	f charge 3.2 nC is: (c) 5.12×10 ⁻³⁸	(d) 5×10 ²⁷	(e) 5×10 ¹⁰
3. A proton is mechanically balanced under the influence of a uniform electric field. The magnitude of the electric field (in N/C) is:				
(a) 10.2×10 ⁻⁸	(b) 10.2×10 ¹⁰	(c) 5×10 ⁻⁸	(d) 5×10 ¹⁰	(e) 5×10-7
4. Two charges q_1 =8 nC and q_2 =-1 nC are separated by 6 cm. The magnitude of the electric field at the mid-point is:				
(a) 7 N/C	(b) 7×10 ⁴ N/C	(c) 9×10 ⁴ N/C	(d) 9 N/C	(e) zero
5. The electric field at a distance 3 cm from a wire is 3600 N/C. The linear charge density of the wire is:				
(a) 6 nC/m	(b) 12 nC/m	(c) 3 nC/m	(d) 9 nC/m	(e) 1 nC/m
6. The electric flux the surface is:		surface is 2000 N.m ² /C.	The total charge en	closed within the
(a) 8.85 nC	(b) 17.7 nC	(c) 35 nC	(d) 2.6 nC	(e) 10 nC
7. The electric potential at center of a conducting sphere of radius 5 cm is 360 V. The magnitude of the electric field at the center of the sphere is:				
(a) 7200 N/C	ne center of the spr (b) 72 N/C	ere is: (c) 18 N/C	(d) 1800 N/C	(e) zero
8. The electric potential at 2 mm away along the axis of an electric dipole is 4500 V. The dipole moment is:				
(a) 1 nC.m	(b) 2 pC.m	(c) 1 pC.m	(d) 2 nC.m	(e) 3 nC.m
9. An isolated sphere of surface area 0.5 m ² is connected to a potential difference of 12 V. The charge on the sphere is:				
(a) 3.76 pC	(b) 2.66 pC	(c) 376 pC	(d) 1.85 pC	(e) 266 pC
10. As shown in the (a) 4.62 V	figure (C1= C3=2μF (b) 2.77 V	and $C_2 = C_4 = 3\mu F$), the vo	oltage across the cap (d) 1.55 V	oacitor C ₂ is: (e) 8.0 V
		C ₁ C ₂ C ₃ C ₃ V ₀₌₈ V	C4	
Constants: $m_e=9.11\times10^{-31}$ kg, $m_p=1.67\times10^{-27}$ kg, $e=1.6\times10^{-19}$ C, $\epsilon=8.85\times10^{-12}$ C ² /N.m ²				