King Abdulaziz University	Faculty of Science	Department of Physics
PHYSICS 202: CA	Summer term 2010	
	Answers	

1. Two charges $\mathrm{q}_{1}=4 \mu \mathrm{C}$ and $\mathrm{q}_{2}=1 \mu \mathrm{C}$ are separated by 6 cm . A third charge is placed where the electric force on it is zero. The distance from q_{2} where the third charge being placed is:
(a) 1 cm
(b) 2 cm
(c) 3 cm
(d) 4 cm
(e) 5 cm
2. The number of electrons in a metal of charge 3.2 nC is:
(a) 2×10^{6}
(b) 2×10^{10}
(c) 5.12×10^{-38}
(d) 5×10^{27}
(e) 5×10^{10}
3. A proton is mechanically balanced under the influence of a uniform electric field. The magnitude of the electric field (in N/C) is:
(a) 10.2×10^{-8}
(b) 10.2×10^{10}
(c) 5×10^{-8}
(d) 5×10^{10}
(e) 5×10^{-7}
4. Two charges $\mathrm{q}_{1}=8 \mathrm{nC}$ and $\mathrm{q}_{2}=1 \mathrm{nC}$ are separated by 6 cm . The magnitude of the electric field at the mid-point is:
(a) $7 \mathrm{~N} / \mathrm{C}$
(b) $7 \times 10^{4} \mathrm{~N} / \mathrm{C}$
(c) $9 \times 10^{4} \mathrm{~N} / \mathrm{C}$
(d) $9 \mathrm{~N} / \mathrm{C}$
(e) zero
5. The electric field at a distance 3 cm from a wire is $3600 \mathrm{~N} / \mathrm{C}$. The linear charge density of the wire is:
(a) $6 \mathrm{nC} / \mathrm{m}$
(b) $12 \mathrm{nC} / \mathrm{m}$
(c) $3 \mathrm{nC} / \mathrm{m}$
(d) $9 \mathrm{nC} / \mathrm{m}$
(e) $1 \mathrm{nC} / \mathrm{m}$
6. The electric flux through a Gaussian surface is 2000 N.m²/C. The total charge enclosed within the surface is:
(a) 8.85 nC
(b) 17.7 nC
(c) 35 nC
(d) 2.6 nC
(e) 10 nC
7. The electric potential at center of a conducting sphere of radius 5 cm is 360 V . The magnitude of the electric field at the center of the sphere is:
(a) $7200 \mathrm{~N} / \mathrm{C}$
(b) $72 \mathrm{~N} / \mathrm{C}$
(c) $18 \mathrm{~N} / \mathrm{C}$
(d) $1800 \mathrm{~N} / \mathrm{C}$
(e) zero
8. The electric potential at 2 mm away along the axis of an electric dipole is 4500 V . The dipole moment is:
(a) $1 \mathrm{nC} . \mathrm{m}$
(b) $2 \mathrm{pC} . \mathrm{m}$
(c) $1 \mathrm{pC} . \mathrm{m}$
(d) $2 \mathrm{nC} . \mathrm{m}$
(e) $3 \mathrm{nC} . \mathrm{m}$
9. An isolated sphere of surface area $0.5 \mathrm{~m}^{2}$ is connected to a potential difference of 12 V . The charge on the sphere is:
(a) 3.76 pC
(b) 2.66 pC
(c) 376 pC
(d) 1.85 pC
(e) 266 pC
10. As shown in the figure ($\mathrm{C}_{1}=\mathrm{C}_{3}=2 \mu \mathrm{~F}$ and $\left.\mathrm{C}_{2}=\mathrm{C}_{4}=3 \mu \mathrm{~F}\right)$, the voltage across the capacitor C_{2} is:
(a) 4.62 V
(b) 2.77 V
(c) 3.87 V
(d) 1.55 V
(e) 8.0 V

