Q1 [3 MARKS]: A charge q is located 4 cm from another charge of -5 nC . If the repulsive force created between these charges is $2.25 \times 10^{-4} \mathrm{~N}$, what is q ?

It is well known that the magnitude of the electrostatic force is

$$
F=\frac{k q_{1} q_{2}}{r^{2}}
$$

Therefore

$$
q_{2}=\frac{F r^{2}}{k q_{1}}=\frac{2.25 \times 10^{-4} \times 0.04^{2}}{9.0 \times 10^{9} \times 5.0 \times 10^{-9}}=8.0 \times 10^{-9} \mathrm{C}
$$

Since the electrostatic force is repulsive, both charges have the same sign. Hence the unknown charge is

$$
q_{2}=-8.0 \times 10^{-9} \mathrm{C}
$$

Q2 [4+3 MARKS]: Two point charges are located on the x-axis as following: $q_{1}=3 \mu C$ at $x=5 \mathrm{~cm}$ and $q_{2}=-6 \mu C$ at $x=12 \mathrm{~cm}$.
(1) Calculate the magnitude and direction of the electric field at the origin $x=0$.
(2) If a charge $Q=-2 n C$ is placed now at the origin, calculate the magnitude and direction of the force acting on this charge [Hint: use the result obtained in (1)].

(1) The electric field due to charge 1 is along the negative x-axis and equals

$$
E_{1}=\frac{k q_{1}}{r_{1}^{2}}=\frac{9.0 \times 10^{9} \times 3.0 \times 10^{-6}}{0.05^{2}}=10.8 \times 10^{6} \mathrm{~N} / \mathrm{C}
$$

The electric field due to charge 2 is along the positive x-axis and equals

$$
E_{2}=\frac{k q_{2}}{r_{2}^{2}}=\frac{9.0 \times 10^{9} \times 6.0 \times 10^{-6}}{0.12^{2}}=3.75 \times 10^{6} \mathrm{~N} / \mathrm{C}
$$

Hence the resultant electric field is

$$
E=E_{2}-E_{1}=3.75 \times 10^{6}-10.8 \times 10^{6}=-7.05 \times 10^{6} \mathrm{~N} / \mathrm{C}
$$

The minus sign indicates that the resultant electric field directs along the negative x-axis.
(2) The magnitude of the electric force is

$$
F=Q E=2.0 \times 10^{-9} \times 7.05 \times 10^{6}=0.0141 \mathrm{~N}
$$

Since the charge \mathbf{Q} is negative, the force will oppose the electric field. Therefore the direction of the force is along the positive x-axis.

