King Abdulaziz University PHYSICS 202 BA		Faculty of Science FALL 2010	Department	of Physics Quiz#2
Name:		•••••	Number:	••••••
	Encircle the corre	ect answers for the fol	lowing questions	
1. The electric	field at a distance	3 cm from a cylindi	rical wire is 3600 N	/C. The linear
charge density	of the wire is:			
(a) 6 nC/m	(b) 12 nC/m	(c) 3 nC/m	(d) 9 nC/m	(e) 1 nC/m
2. Two charges	25.9 μC and -8.2 μC	Care confined in a sp	herical surface of rac	dius 5 cm. The
net electric flux	though the surface	is (in SI units):		
(a) 2.0×10 ⁶	(b) 4.14 ×10 ³	(c) 17.7 ×10 ⁶	(d) 17.7 ×10 ³	(e) zero
			(d) 17.7 ×10 ³	(e) zero
-		er of a conducting s	phere of radius 5 cm	
-			phere of radius 5 cm e is:	
magnitude of th (a) 7200 N/C	ne electric field at th (b) 72 N/C	er of a conducting s le center of the spher	phere of radius 5 cm e is: (d) 1800 N/C	n is 360 V. The (e) zero
magnitude of th (a) 7200 N/C 5. The electric p	(b) 72 N/C	er of a conducting splee center of the spherence (c) 18 N/C	phere of radius 5 cm e is: (d) 1800 N/C	n is 360 V. The (e) zero
magnitude of th (a) 7200 N/C 5. The electric p dipole moment	(b) 72 N/C	er of a conducting splee center of the spherence (c) 18 N/C	phere of radius 5 cm e is: (d) 1800 N/C	n is 360 V. The (e) zero
magnitude of th (a) 7200 N/C	be electric field at th (b) 72 N/C potential at 2 mm av	er of a conducting splet te center of the spher (c) 18 N/C way along the axis c	phere of radius 5 cm e is: (d) 1800 N/C of an electric dipole	n is 360 V. The (e) zero is 4500 V. The