Elementary Statistics

A Step by Step Approach Sixth Edition

by

Allan G. Bluman

http://www.mhhe.com/math/stat/blumanbrief

SLIDES PREPARED

LLOYD R. JAISINGH MOREHEAD STATE UNIVERSITY MOREHEAD KY

Updated by Dr. Saeed Alghamdi King Abdulaziz University www.kau.edu.sa/saalghamdy

CHAPTER 10

Correlation and Regression

Dr. Saeed Alghamdi, Statistics Department, Faculty of Sciences, King Abdulaziz University

Objectives

10-1

- □ Draw a scatter plot for a set of ordered pairs.
- □ Compute the correlation coefficient.
- □ Compute the equation of the regression line.

Dr. Saeed Alghamdi, Statistics Department, Faculty of Sciences, King Abdulaziz University

Notes

Introduction

10-2

- □ Inferential statistics involves determining whether a relationship between two or more numerical or quantitative variables exists.
- □ <u>Correlation</u> is a statistical method used to determine whether a relationship between variables exists.
- □ <u>Regression</u> is a statistical method used to describe the nature of the relationship between variables, that is, positive or negative, linear or nonlinear.

	Notes
□	
□	
□	
□	
□	

Introduction

Statistical Questions

- 1. Are two or more variables related?
- 2. If so, what is the strength of the relationship?
- 3. What type or relationship exists?
- 4. What kind of predictions can be made from the relationship?

Dr. Saeed Alghamdi, Statistics Department, Faculty of Sciences, King Abdulaziz University

L	Notes
<u> </u>	
-	
<u> </u>	
.	
□	

Introduction

□ A *correlation coefficient* is a measure of how variables are related.

□ In a <u>simple relationship</u>, there are only two types of variables under study; an <u>independent variable</u> or <u>explanatory</u> <u>variable</u> or a <u>predictor variable</u>, and a <u>dependent variable</u> or an <u>outcome variable</u> or a <u>response variable</u>.

 ${\bf Dr.\,Saeed\,Alghamdi,\,Statistics\,Department,\,Faculty\,of\,Sciences,\,King\,Abdulaziz\,University}$

								١	٧c	ot	е	s								
□.		 	 	•••	 • •	 	• •	• •			••		• •	 	 	 • •	 •••	•••	••••	
□.	•••	 	 		 	 							••	 	 	 	 			
□ .		 	 		 	 								 	 	 	 			
□ .		 	 	•••	 	 								 	 	 	 			 -
□.		 	 		 	 								 	 	 	 			

Introduction

□ Simple relationship can be positive or negative.

- □ A *positive relationship* exists when both variables increase or decrease at the same time
- □ A <u>negative relationship</u> exists when one variable increases and the other variable decreases.

	Notes
□.	
□.	
□.	
□.	
□.	

Scatter Plots

- \Box A <u>scatter plot</u> is a graph of the ordered pairs (x,y) of numbers consisting of the <u>independent</u> variable, x, and the <u>dependent</u> variable, y.
- □ A <u>scatter plot</u> is a visual way to describe the nature of the relationship between the independent and dependent variables.

Dr. Saeed Alghamdi, Statistics Department, Faculty of Sciences, King Abdulaziz University

	Notes
П	

Correlation Coefficient

- □ The *correlation coefficient* computed from the sample data measures the strength and direction of a linear relationship between two variables.
- □ The symbol for the sample correlation coefficient is *r*.
- \Box The symbol for the population correlation coefficient is ρ (rho).

Notes
'

Correlation Coefficient

- \Box The range of the correlation coefficient is from -1 to +1.
- □ If there is a <u>strong positive linear</u> <u>relationship</u> between the variables, the value of r will be close to +1.
- □ If there is a <u>strong negative linear</u> <u>relationship</u> between the variables, the value of r will be close to -1.

Dr. Saeed Alghamdi, Statistics Department, Faculty of Sciences, King Abdulaziz University

	Notes
□.	
□ .	
□.	
□.	

Correlation Coefficient

□ When there is no linear relationship between the variables or only a weak relationship, the value of *r* will be close to 0.

* See Figure 10-6 on page 534

Dr. Saeed Alghamdi, Statistics Department, Faculty of Sciences, King Abdulaziz University

	Notes
o	
·	

Correlation Coefficient Complete Positive Linear Relationship 0.90 --- 0.99 Very Strong Positive Linear Relationship 0.70 --- 0.89 Strong Positive Linear Relationship 0.50 — 0.69 0.30 — 0.49 Moderate Positive Linear Relationship Weak Positive Linear Relationship Very Weak Positive Linear Relationship 0.01 --- 0.29 0 No Linear Relationship -0.01 ---- -0.29 Very Weak Negative Linear Relationship -0.30 ---- -0.49 Weak Negative Linear Relationship -0.50 --- -0.69 Moderate Negative Linear Relationship -0.70 ---- -0.89 Strong Negative Linear Relationship -0.90 --- -0.99 Very Strong Negative Linear Relationship Complete Negative Linear Relationship Dr. Saeed Alghamdi, Statistics Department, Faculty of Sciences, King Abdulaziz Univ

	Notes
-	
□	
□	
□	

Correlation Coefficient

Formula for the <u>Pearson product moment</u> <u>correlation coefficient</u> (r)

$$r = \frac{n(\sum xy) - (\sum x)(\sum y)}{\sqrt{[n(\sum x^2) - (\sum x)^2] [n(\sum y^2) - (\sum y)^2]}}$$

 \Box where *n* is the number of data pairs.

* See examples 10-4 and 10-5

Dr. Saeed Alghamdi, Statistics Department, Faculty of Sciences, King Abdulaziz University

	Notes
□.	
□.	
□.	
□.	

A researcher wishes to determine if a person's age is related to the number of hours he or she exercises per week. The data for the sample are shown below.

 Age x
 18
 26
 32
 38
 52
 59

 Hours y
 10
 5
 2
 3
 1.5
 1

a. Draw the scatter plot for the variables.

	Notes
o	
o	

b. Compute the value of the correlation	coefficient.
	7

Age x	18	26	32	38	52	59	225
Hours y	10	5	2	3	1.5	1	22.5
x^2	324	676	1024	1444	2704	3481	9653
y^2	100	25	4	9	2.25	1	141.25
$x \times y$	180	130	64	114	78	59	625

$$r = \frac{n(\sum xy) - (\sum x)(\sum y)}{\sqrt{\left[n(\sum x^2) - (\sum x)^2\right]\left[n(\sum y^2)(\sum y)^2\right]}}$$

$$r = \frac{6(625) - (225)(22.5)}{\sqrt{\left[6(9653) - (225)^2\right]\left[6(141.25) - (22.5)^2\right]}} = -0.832$$
Thus, there is a strong negative linear relationship which means that older people tend to exercise less on average.

	Notes
⊔ .	
□ .	
□.	
□.	

Regression Line

- ☐ If the value of the correlation coefficient is significant (will not be discussed here), the next step is to determine the equation of the <u>regression line</u> which is the data's line of best fit.
- □ <u>Best fit</u> means that the sum of the squares of the vertical distance from each point to the line is at a minimum. See Figure 10-12 page 545.

Dr. Saeed Alghamdi, Statistics Department, Faculty of Sciences, King Abdulaziz University

											١	1	0	t	e	95	3													
	 	• •	 	 	 	•			 		• •						•	 	 		 •	 	 	• • •	••	••	••	••		
	 		 	 	 				 									 	 		 •	 					••			
	 	• •	 	 	 	•			 	•							•	 	 		 •	 	 •			••	••	••		

Equation of a Line

- □ The equation of the regression line is written as $\underline{y' = a + bx}$, where *b* is the slope of the line and *a* is the *y'* intercept.
- * See Figure 10-13 page 546.
- \Box The regression line can be used to predict a value for the <u>dependent</u> variable (*y*) for a given value of the <u>independent</u> variable (*x*).
- □ <u>Caution:</u> Use *x* values within the experimental region when predicting *y* values.

	Notes
□.	
□.	
□.	
ο.	
□.	

Regression Line

 \Box Formulas for the regression line y' = a + bx

$$a = \frac{(\sum y)(\sum x^2) - (\sum x)(\sum xy)}{n(\sum x^2) - (\sum x)^2}$$

$$b = \frac{n(\sum xy) - (\sum x)(\sum y)}{n(\sum x^2) - (\sum x)^2}$$

where a is the y' intercept and b is the slope of the line.

* See examples 10-9, 10-10 and 10-11

Dr. Saeed Alghamdi, Statistics Department, Faculty of Sciences, King Abdulaziz University

	Notes
□.	
□ .	
□.	
□ .	
□.	

Assumptions for Valid Predictions in Regression

- 1. For any specific value of the independent variable *x*, the value of the dependent variable *y* must be normally distributed about the regression line.
- 2. The standard deviation of each of the dependent variables must be the same for each value of the independent variable.
- * See Figure 10-16 page 549.

Note: When *r* is not significantly different from 0, the best predictor of *y* is the mean of the data values of *y*.

Dr. Saeed Alghamdi, Statistics Department, Faculty of Sciences, King Abdulaziz Universit

10-20

Find the equation of the regression line and find the y' value for the specified x value. Remember that no regression should be done when r is not significant.

Ages and Exercise

Age x	18	26	32	38	52	59
Hours y	10	5	2	3	1.5	1

Find y' when x = 35 years.

$$y' = a + bx$$

_	
	Notes
	<u>-</u>
□	
□	
□	
□	

10-21	$a = \frac{(\sum y)^2}{2}$	$\int (\sum x^2) \int (\sum x^2) dx$) - (Σ ²) - (Σ	$(\Sigma x)(\Sigma x)^2$	ху)			Σ				
	Age x	18	26	32	38	52	59	225				
	Hours y	10	5	2	3	1.5	1	22.5				
	x^2	324	676	1024	1444	2704	3481	9653				
	y^2	100	25	4	9	2.25	1	141.25				
	$x \times y$	180	130	64	114	78	59	625				
	$a = \frac{(22.5)(9653) - (225)(625)}{6(9653) - (225)^2} = 10.499$ Dr. Saeed Alghamdi, Statistics Department, Faculty of Sciences, King Abdulaziz University											

	Notes
	
	

10-22	$b = \frac{n(\sum_{i=1}^{n} n(i))}{n(i)}$	(Σx^2)	$\frac{(\Sigma x)(\Sigma x)}{-(\Sigma x)}$	$\frac{\sum y}{\sum y}$								
	Ago v	18	26	32	38	52	59	∑ 225				
	Age x	10	20			32	59	223				
	Hours y	10	5	2	3	1.5	1	22.5				
	x^2	324	676	1024	1444	2704	3481	9653				
	y^2	100	25	4	9	2.25	1	141.25				
	$x \times y$	180	130	64	114	78	59	625				
	$b = \frac{6(625) - (225)(22.5)}{6(9653) - (225)^2} = \boxed{-0.18}$ Dr. Saeed Alghamdi, Statistics Department, Faculty of Sciences, King Abdulaziz University											

Age x Hours y $a = 10.499 b = y' = a + bx$	18 10 - 0.	5	2	-	1.5	59	
a = 10.499 b =			2	3	1.5	1	
	- 0.	.18					
y' = (4.199 hours)							
Thus, a person who is 35 years old tends to exercise 4.199 hours per weak on average.							

	Notes
□ .	
□.	
□.	
□.	
□.	

Elementary Statistics

A Step by Step Approach Sixth Edition

by

Allan G. Bluman

http://www.mhhe.com/math/stat/blumanbrief

SLIDES PREPARED BY

LLOYD R. JAISINGH MOREHEAD STATE UNIVERSITY MOREHEAD KY

Updated by Dr. Saeed Alghamdi King Abdulaziz University www.kau.edu.sa/saalghamdy

CHAPTER 13

Nonparametric Statistics

Dr. Saeed Alghamdi, Statistics Department, Faculty of Sciences, King Abdulaziz University

The Spearman Rank Correlation Coefficient

□ When the assumption that the populations from which the samples are obtained are normally distributed cannot be met, the nonparametric equivalent of *Pearson product moment correlation coefficient* is Spearman rank correlation coefficient.

 $r_s = 1 - \frac{6\sum d^2}{n(n^2 - 1)}$

where d = difference in the ranks and

n = number of data pairs

* See example 13-7

Dr. Saeed Alghamdi, Statistics Department, Faculty of Sciences, King Abdulaziz University

	Notes
□.	
□.	
□.	
□.	
□ .	

The table shows the total number of tornadoes that occurred in states from 1962 to 1991 and the record high temperatures for the same states. Is there a relationship between the number of tornadoes and the record high temperatures?

State	Tornadoes	Record High Temp
AL	668	112
CO	781	118
FL	1590	109
IL	798	117
KS	1198	121
NY	169	108
PA	310	111
TN	360	113
VT	21	105
\A/I	625	11/

	Notes
□	

Tornado	R_1	Temp	R_2	$R_1 - R_2$	d ²	<i>n</i> = 10
668	6	112	5	1	1	$\sum d^2 = 64$
781	7	118	9	-2	4	$\sum u = 04$
1590	10	109	3	7	49	$6\Sigma d^2$ 6(64)
798	8	117	8	0	0	$r_S = 1 - \frac{6\Sigma d^2}{n(n^2 - 1)} = 1 - \frac{6(64)}{10(10^2 - 1)}$
1198	9	121	10	-1	1	= 0.612
169	2	108	2	0	0	
310	3	111	4	-1	1	There is a moderate positive
360	4	113	6	-2	4	linear relationship between
21	1	105	1	0	0	the number of tornados and
625	5	114	7	-2	4	the record high temperatures

L	Notes
	1
	1
	1
	1
	1