Rickettsia, Orientia, Ehrlichia, Coxiella and Bartonella
History of Rickettsial Diseases

- Epidemic typhus - 16th century
- Associated with wars and famine
- WWI and WWII - 100,000 people affected
- Ricketts identifies causative agent of Rocky Mountain spotted fever - 20th century
- Arthropod vectors identified
- Arthropod control measures instituted
Rash of Rocky Mountain Spotted Fever
Rickettsia, Orientia, Ehrlichia and Coxiella Biology

- Small obligate intracellular parasites
- Once considered to be viruses
- Separate unrelated genera
- Gram-negative bacteria
 - Stain poorly with Gram stain (Giemsa)
- Reservoirs - animals, insects and humans
- Arthropod vectors (except *Coxiella*)
<table>
<thead>
<tr>
<th>Disease</th>
<th>Organism</th>
<th>Vector</th>
<th>Reservoir</th>
</tr>
</thead>
<tbody>
<tr>
<td>Rocky Mountain spotted fever</td>
<td>R. rickettsii</td>
<td>TICK</td>
<td>Ticks, rodents</td>
</tr>
<tr>
<td>Ehrlichiosis</td>
<td>E. chaffeensis</td>
<td>TICK</td>
<td>Ticks</td>
</tr>
<tr>
<td>Rickettsialpox</td>
<td>R. akari</td>
<td>MITE</td>
<td>Mites, rodents</td>
</tr>
<tr>
<td>Scrub typhus</td>
<td>O. tsutsugamushi</td>
<td>MITE</td>
<td>Mites, rodents</td>
</tr>
<tr>
<td>Epidemic typhus</td>
<td>R. prowazekii</td>
<td>Louse</td>
<td>Humans, squirrel fleas, flying squirrels</td>
</tr>
<tr>
<td>Murine typhus</td>
<td>R. thypi</td>
<td>Flea</td>
<td>Rodents</td>
</tr>
<tr>
<td>Q fever</td>
<td>C. burnetii</td>
<td>None</td>
<td>Cattle, sheep, goats, cats</td>
</tr>
<tr>
<td>Disease</td>
<td>Organism</td>
<td>Vector</td>
<td>Reservoir</td>
</tr>
<tr>
<td>------------------------------</td>
<td>--------------</td>
<td>----------</td>
<td>-------------------------------</td>
</tr>
<tr>
<td>Rocky Mountain spotted fever</td>
<td>R. rickettsii</td>
<td>Tick-borne</td>
<td>Ticks, wild rodents</td>
</tr>
<tr>
<td>Rickettsialpox</td>
<td>R. akari</td>
<td>Mite-borne</td>
<td>Mites, wild rodents</td>
</tr>
<tr>
<td>Scrub typhus</td>
<td>O. tsutsugamushi</td>
<td></td>
<td>Mites (chiggers), wild rodents</td>
</tr>
<tr>
<td>Epidemic typhus</td>
<td>R. prowazekii</td>
<td>Louse-borne</td>
<td>Humans, squirrel fleas, flying squirrels</td>
</tr>
<tr>
<td>Murine endemic typhus</td>
<td>R. typhi</td>
<td>Flea-borne</td>
<td>Wild rodents</td>
</tr>
</tbody>
</table>

FIGURE 45–1. Epidemiology of common *Rickettsia* and *Orientia* infections.
Rickettsia and Orientia

Note: *Orientia* was formerly *Rickettsia*
Replication of *Rickettsia* and *Orientia*

- Infect endothelial in small blood vessels - Induced phagocytosis
- Lysis of phagosome and entry into cytoplasm - Phospholipase
- Replication
- Release
Groups of Rickettsia Based on Antigenic Structure

Spotted fever group:
- **R. rickettsii**
 - Rocky Mountain spotted fever
 - Western hemisphere
- **R. akari**
 - Rickettsialpox
 - USA, former Soviet Union
- **R. conorii**
 - Boutonneuse fever
 - Mediterranean countries, Africa, India, Southwest Asia
- **R. sibirica**
 - Siberian tick typhus
 - Siberia, Mongolia, northern China
- **R. australis**
 - Australian tick typhus
 - Australia
- **R. japonica**
 - Oriental spotted fever
 - Japan

Typhus group:
- **R. prowazekii**
 - Epidemic typhus
 - South America and Africa
 - Recrudescent typhus
 - Worldwide
 - Sporadic typhus
 - United States
 - Murine typhus
 - Worldwide

Scrub typhus group:
- **O. tsutsugamushi**
 - Scrub typhus
 - Asia, northern Australia, Pacific Islands
Pathogenesis and Immunity

- No known toxins or immunopathology
- Destruction of cells
 - Leakage of blood into tissues (rash)
 - Organ and tissue damage
- Humoral and cell mediated immunity important for recovery
 - Antibody-opsonized bacteria are killed
 - CMI develops
Spotted Fever Group
Rickettsia rickettsii

- Rocky Mountain spotted fever

Fluorescent Ab staining Vector - Tick

From: G. Wistreich, Microbiology Perspectives, Prentice Hall
Epidemiology - *R. rickettsii*
Rocky Mountain Spotted Fever

- Most common rickettsial infection in USA
 - 400 - 700 cases annually
 - South Central USA
- Most common from April - September
- Vector - Ixodid (hard) tick via saliva
 - Prolonged exposure to tick is necessary
- Reservoirs - ticks (transovarian passage) and rodents
 - Humans are accidentally infected
Rash of Rocky Mountain Spotted Fever
Clinical Syndrome - Rocky Mountain Spotted Fever

- Incubation period - 2 to 12 days
- Abrupt onset fever, chills headache and myalgia
- Rash appears 2-3 days later in most (90%) patients
 - Begins on hands and feet and spreads to trunk (centripetal spread)
 - Palms and soles common
 - Maculopapular but can become petechial or hemorrhagic
- Complications from widespread vasculitis
 - Gastrointestinal, respiratory, seizures, coma, renal failure
 - Most common when rash does not appear
- Mortality in untreated cases - 20%
Laboratory Diagnosis - \textit{R. rickettsii}

- Initial diagnosis - clinical grounds
- Fluorescent Ab test for Ag in punch biopsy - reference labs
- PCR based tests - reference labs
- Weil-Felix test - no longer recommended
- Serology
 - Indirect fluorescent Ab test for Ab
 - Latex agglutination test for Ab
Treatment, Prevention and Control

R. rickettsii

- Tetracycline and chloramphenicol
 - Prompt treatment reduces morbidity and mortality
- No vaccine
- Prevention of tick bites (protective clothing, insect repellents)
- Prompt removal of ticks
- Can’t control the reservoir
Rickettsia akari

• Rickettsialpox
Typhus Group
Rickettsia prowazekii

- Epidemic typhus
- Brill-Zinssser disease

Fluorescent-Ab staining Vector - Louse

From: G. Wistreich, Microbiology Perspectives, Prentice Hall
Epidemiology - *R. prowazekii*
Epidemic typhus

- Associated with unsanitary conditions
 - War, famine, etc.
- Vector - human body louse
 - Bacteria found in feces
- Reservoir
 - Primarily humans (epidemic form)
 - No transovarian transmission in the louse
- Sporadic disease in Southeastern USA
 - Reservoir - flying squirrels
 - Vector - squirrel fleas
Clinical Syndrome - Epidemic typhus

• Incubation period approximately 1 week
• Sudden onset of fever, chills, headache and myalgia
• After 1 week rash
 – Maculopapular progressing to petechial or hemorrhagic
 – First on trunk and spreads to extremities (centrifugal spread)
• Complications
 – Myocarditis, stupor, delirium (Greek “typhos” = smoke)
• Recovery may take months
• Mortality rate can be high (60-70%)
Clinical Syndrome - Brill-Zinssser Disease

- Recrudescent epidemic typhus
 - Commonly seen in those exposed during WWII
- Disease is similar to epidemic typhus but milder
- Rash is rare
- High index of suspicion need for diagnosis
Laboratory Diagnosis - *R. prowazekii*

- Weil-Felix antibodies - not recommended
- Isolation possible but dangerous
- Serology
 - Indirect fluorescent Ab and latex agglutination tests
 - Epidemic typhus - IgM followed by IgG Abs
 - Brill-Zinsser - IgG anamnestic response
Treatment, prevention and Control

R. prowazekii

- Tetracycline and chloramphenicol
- Louse control measures
- Vaccine available for high risk populations
Rickettsia typhi

- Murine or endemic typhus
Epidemiology - *R. typhi*
Murine or endemic typhus

- Occurs worldwide
- Vector - rat flea
 - Bacteria in feces
- Reservoir - rats
 - No transovarian transmission
 - Normal cycle - rat to flea to rat
- Humans accidentally infected
Clinical Syndrome- Murine Typhus

• Incubation period 1 - 2 weeks
• Sudden onset of fever, chills, headache and myalgia
• Rash in most cases
 – Begins on trunk and spreads to extremities (centrifugal spread)
• Mild disease - resolves even if untreated
Laboratory Diagnosis - *R. typhi*

- Serology
 - Indirect fluorescent antibody test
Treatment, Prevention and Control

R. typhi

- Tetracycline and chloramphenicol
- Control rodent reservoir
Scrub Typhus Group
Orientzia (Rickettsia) tsutsugamushi

- Scrub typhus
- Japanese “tsutsuga” = small and dangerous and “mushi” = creature
- “Scrub” - associated with terrain with scrub vegetation
Epidemiology - *O. tsutsugamushi*

Scrub Typhus

- **Vector** - chiggers (mite larva)
- **Reservoir** - chiggers and rats
 - Transovarian transmission
 - Normal cycle - rat to mite to rat
- **Humans are accidentally infected**
Clinical Syndrome - Scrub Typhus

• Incubation period - 1 to 3 weeks
• Sudden onset of fever, chills, headache and myalgia
• Maculopapular rash
 – Begins on trunk and spreads to extremities (centrifugal spread)
• Mortality rates variable
Laboratory Diagnosis - *O. tsutsugamushi*

- Serology
Treatment, Prevention and Control

O. tsutsugamushi

- Tetracycline and chloramphenicol
- Measures to avoid exposure to chiggers
Coxiella
Coxiella burnetii

- Q fever (Q for query)

Fluorescent-Ab Stain

From: G. Wistreich, Microbiology Perspectives, Prentice Hall
Replication of *Coxiella burnetii*

- Infection of macrophages
- Survival in phagolysosome
- Replication
- Lysis of cell
Pathogenesis and Immunity - *C. burnetii*

- Inhalation of airborne particles
- Multiplication in lungs and dissemination to other organs
- Pneumonia and granulomatous hepatitis in severe cases
- In chronic disease immune complexes may play a role in pathogenesis
- Cellular immunity is important in recovery
Pathogenesis and Immunity - *C. burnetii*

- Phase variation in LPS
 - Acute disease - Antibodies to phase II antigen
 - Chronic disease - Antibodies to both phase I and phase II antigens
Epidemiology - C. burnetii

Q fever

- Stable “spore like”
- Infects many animals including sheep, goats, cattle, and cats
- High titers in placentas of infected animals
- Persists in soil
- Found in milk of infected animals
- No arthropod vector
- Disease of ranchers, veterinarians, and abattoir workers
Clinical Syndrome - Q Fever

- **Acute Q fever**
 - Can be mild or asymptomatic
 - fever, chills, headache and myalgia
 - Respiratory symptoms usually mild (atypical pneumonia)
 - Hepatomegaly and splenomegaly can be observed
 - Granulomas in the liver are observed histologically

- **Chronic Q fever**
 - Typically presents as endocarditis on a damaged heart valve
 - Prognosis is poor
Treatment, Prevention and Control

C. burnetii

- Acute Q fever - tetracycline
- Chronic Q fever - combination of antibiotics
- Vaccine is available but it is not used in the USA
Bartonella
Epidemiology - *B. henselae*
Cat-scratch Disease

• Acquired from cat bite or scratch and possibly from cat fleas
Clinical Syndrome
Cat-scratch Disease

- Benign disease
- Chronic regional lymphadenopathy
Laboratory Diagnosis - *B. henselae*

- Serology
Treatment - *B. henselae*

- Does not respond to antimicrobial therapy