EE251 Lectures

3-Phase Systems

Section 09

3-Phase Generators

- Method for transmitting alternating power
- Three conductors carrying three alternating currents with 360/3=120° shift between them

Why 3φ System?

- Single Phase Generation
 - push power
 - then stop
 - then drain power → breaks down

- n-Phase Generation
 - constant power generation all the time
 - cost effective
- Usage
 - -1ϕ of each phase at homes
 - 3φ loads at industry

Vector Representation

$$v_{12} = v_1 - v_2$$

$$= 1 \angle 0^{\circ} - 1 \angle 120^{\circ}$$

$$= 1 - (\cos 120 + j \sin 120)$$

$$= \frac{3}{2} - j \frac{\sqrt{3}}{2}$$

$$v_{12} = \sqrt{3} \angle -30^{\circ}$$

$$v_{23} = \sqrt{3} \angle + 90^{\circ}$$

$$v_{31} = \sqrt{3} \angle -150^{\circ}$$

Examples

• If a phase voltage is 120V~

$$120 \cdot \sqrt{3} = 208V \sim$$

– Line Voltage =

• If a line voltage is 220V~

$$220 / \sqrt{3} = 127V \sim$$

– Phase Voltage =

More Advantages

- Using Line Voltages
 - Higher voltage → Less Currents
 - Two different voltage ratings

- Single Phase
 - 6 wires instead of 4 (sometimes 3)
 - More line losses

Star-Start Connection

Star-Delta Connection

Balanced Load

$$i_1=I\angle 0^\circ, i_2=I\angle 120^\circ, i_3=I\angle 240^\circ$$

$$I_n=0$$

Power Factor (PF)

Best Network when Q=0

 \bullet Let the angle between Voltage and Current be θ

$$PF = \cos \theta = \begin{cases} 1 & \theta = 0^{\circ} \\ 0 & \theta = 90^{\circ} \end{cases}$$

Power Factor Correction (Y)

$$PF = \frac{r}{\sqrt{r^2 + y^2}}$$

$$x = \frac{r^2 + y^2}{y} \longrightarrow Z_{eq} = r + \frac{y^2}{r}$$

Power Factor Correction (Δ)

$$PF = \frac{r}{\sqrt{r^2 + y^2}}$$

$$x = \frac{r^2 + y^2}{y} \to Z_{eq} = r + \frac{y^2}{r}$$

Example

