EE251 Lectures

Transformers

Section 08

Hans Christian Oersted (1777 – 1851)

1822

In 1820 he showed that a current produces a magnetic field.

Ref: http://chem.ch.huji.ac.il/~eugeniik/history/oersted.htm

André-Marie Ampère (1775 – 1836)

French mathematics professor who only a week after learning of Oersted's discoveries in Sept. 1820 demonstrated that parallel wires carrying currents attract and repel each other.

A moving charge of 1 *coulomb* per second is a current of 1 *ampere* (amp).

Ideal Transformer

Ideal Transformer Equations

$$v_{2} = \frac{n_{2}}{n_{1}} \times v_{1}$$

$$i_{2} = \frac{n_{1}}{n_{2}} \times i_{1}$$

$$R_{eq} = \left(\frac{n_{1}}{n_{2}}\right)^{2} \times R_{L}$$

$$P_{1} = P_{2}$$

$$i_{1} = \frac{n_{1}}{n_{2}} \times v_{1}$$

$$v_{1} = \frac{i_{2}}{n_{2}} \times R_{L}$$

$$v_{2} = \frac{n_{1}}{n_{2}} \times R_{L}$$

$$115 \stackrel{+}{\bigcirc} \stackrel{}{\overbrace{i_1}} \stackrel{}{\underbrace{k_{eq}}}$$

$$R_{eq} = \left(\frac{10}{1}\right)^2 \times 10 = 1000\Omega$$
 $i_1 = \frac{115}{3+1000} = 0.1147A$

$$v_1 = 115 - i_1 \times 3 = 114.7V$$
 $v_2 = \frac{1}{10} \times v_1 = 11.47$
 $i_2 = \frac{11.47}{10} = 1.147A$