EE251 Lectures

Circuit Analysis

Section 04

Ohm's Law

 A current through a resistor is proportional to the voltage across its terminals

$$V = I \cdot R$$

or
$$I = \frac{V}{R}$$

$$R \to \infty \qquad I = 0$$
$$R \to 0 \qquad I = \infty$$

$$R \to 0$$
 $I = \infty$

Short a 1.5 battery, what will happen?

Internal Resistance

• If you short a 1.5V battery, how much current will page?

Overloading

Question

What is the total current drawn from the

University

Voltage Divider

$$v_1 = v_s \frac{R_1}{R_1 + R_2}$$

$$v_2 = v_s \frac{R_2}{R_1 + R_2}$$

Current Divider

$$I_1 = I_T \frac{R_2}{R_1 + R_2}$$

$$I_2 = I_T \frac{R_1}{R_1 + R_2}$$

Multiple Loads

Combine Parallel Loads

Multiple Loads

Multiple Loads

$$I_2 = I_4 \frac{R_3}{R_2 + R_3}$$

$$I_3 = I_4 \frac{R_2}{R_2 + R_3}$$

Current Divider

$$R_p = R_1 // R_2 // \cdots // R_n$$

$$I_k = I_T \frac{R_p}{R_k}$$

Process Check

- Calculate all currents in the circuit...
 - What is your plan?!

Multiple Sources

- What if more than one source in the circuit?
 - How to solve for all currents?

Nodes and Loops

A Node

– a point in a circuit where 3 or more elements

Nodes and Loops

• How many nodes in the circuits? $\frac{V_{cc}}{V_{cc}}$

Nodes and Loops

- A Loop:
 - a closed ring in a planer circuit

Planer Circuit

Voltage Drop

A current passing through a load generates a voltage drop

$$\begin{array}{ccc}
i & Z \\
 & \downarrow & \downarrow \\
 & \downarrow$$

KVL and KCL

 (nodes, loops, planner circuit, voltage drop) then what?

- To solve for all currents and volts in a circuit:
 - KVL: Kirchhoff's Voltage Law
 - the sum of voltage drops in a loop is zero
 - KCL: Kirchhoff's Current Law
 - the sum of currents into a node is zero

Circuit Analysis

- 1. count nodes minus one (possible ground)
- 2. mark a current for each branch
- 3. write KCL equations

- 4. count loops
- 5. write KVL equations

Example

$$KCL: I_1 = I_2 + I_3$$

$$KVL: \begin{array}{rcl} -1.5 + 6I_1 + 5I_3 & = 0 \\ -5I_3 + 4I_2 + 12I_2 & = 0 \end{array}$$

$$I_1 = 152.9 \quad mA$$

 $\Rightarrow I_2 = 36.4 \quad mA$
 $I_3 = 116.5 \quad mA$

8 branches \rightarrow 8 currents $I_1...I_8 \rightarrow$ 8 equations

4 nodes \rightarrow 4 eqs

4 loops \rightarrow 4 eqs

Impedance

- treat all passive components as resistors
 - but with complex resistances

Impedance

 What is the impedance of a 10µF capacitor when operated at 60Hz?

$$Z_C = -\frac{j}{wC} = -\frac{j}{2\pi \times 60 \times 10 \times 10^{-6}} = -j265.25\Omega$$

 What is the impedance of a 2mH inductor when operated at 60Hz? $Z_T = jwL = j2\pi \times 60 \times 2 \times 10^{-3} = +j0.754\Omega$

$$Z_L = jwL = j2\pi \times 60 \times 2 \times 10^{-3} = +j0.754\Omega$$

Laplace Domain

- When
 - Mixing AC and DC sources
 - Multiple different frequencies

- use Laplace instead of Fourier
 - $-jw \rightarrow s$
 - Initial conditions

University

Current Source

Voltage Source

- Generates constant volt regardless of the load

Current Source

- Generates constant current romed ess of the load

$$v_1 = 5 \times 10 = 50V$$

$$v_2 = 5 \times 15 = 75V$$

Example

KCL:
$$I_1 = I_2 + I_3$$

$$KVL: -20 + 3I_1 + 5I_3 = 0$$

$$-5I_3 + 10I_2 + v_i = 0$$

$$I_{1} = 0.625 \qquad A$$

$$\Rightarrow I_{2} = -3 \qquad A$$

$$I_{3} = 3.625 \qquad A$$

$$v_{i} = 48.125 \qquad V$$

Electrical & Computer
Engineering King Abdulaziz
University

 $IS: I_2 = -3A$

Complex AC Source

- AC Volt or Current has:
 - Amplitude
 - Frequency
 - Phase

• Phase can be expressed in Complex Number $A\cos(2\pi f \cdot t + \varphi)$

$$\rightarrow A \angle \varphi$$

Complex AC Source

$$A\cos(2\pi f \cdot t + \varphi)$$

 $A \angle \varphi \longrightarrow A \cdot (\cos \varphi + j\sin \varphi)$

$$110\angle 30^{\circ} \rightarrow 110 \cdot (\cos 30^{\circ} + j \sin 30^{\circ})$$

= $95.26 + j55$

Power

- Power = rate of energy transfer
 - measured in Watts (W)

$$P = I \cdot V$$

$$P = I \cdot V = I^{2} \cdot R$$

$$P = I \cdot V = \frac{V^{2}}{R}$$

Reactive Power

- Actual Power
 - On resistors only

$$P = I \times V$$

- Reactive Power
 - Imaginary Part of IV
 - $S = I^* \times V = P + j Q$
 - RMS Values of (V) and (I)

Process Check

 Solve the circuit shown and find the power consumption of each component

Solution (1)

$$10V \xrightarrow{+} 10k\Omega$$

$$I = \frac{10}{10k + 15k} = 400\mu A$$

$$P_1 = I^2 \cdot R_1 = (400 \times 10^{-6})^2 \cdot 10 \times 10^3 = 1.6 mW$$

$$P_2 = I^2 \cdot R_2 = (400 \times 10^{-6})^2 \cdot 15 \times 10^3 = 2.4 \text{mW}$$

Solution (2)

$$P_1 = \frac{V_1^2}{R_1} = \frac{4^2}{10 \times 10^3} = 1.6 mW$$

$$P_2 = \frac{V_2^2}{R_2} = \frac{6^2}{15 \times 10^3} = 2.4 \text{mW}$$

Total Power = 0

$$P_S = I \cdot V = -400 \times 10^{-6} \cdot 10 = -4mW$$

$$P_1 + P_2 = 4mW$$

Total Power = Zero