Metric Spaces Functional Analysis

METRIC SPACES

1. METRIC SPACES

Definition 1.1:[Metric Space]

Let X be a none-empty set. A mapping d : X x X — R is said to be a metric space on x if it satisfies the following

conditions
(1) d(x,y) 20 Vx,yeX
(2) d(x,y)=0x=y Vx,yeX
(3) d(x,y) =d(y,x), Vx,y€ X (Symmetric)
4) d(x,y) <d(x,2)+d(z,y) Vx,y,z € X (Triangle Inequality)

0, ifx=y;
Example 1: Let X be any non-empty set .Define a mapping d : X x X — R by d(x,y) = Y
1, ifx#y.
Then d is a metric on X, and this metric is called discrete metric.
Example 2: Let X = F*(C",R"), n > 1. Let x = (x1,x2, - ,X%4),y = (y1,¥2,-** ,yn) € F" Define d : X xX — R
by d(x,y) Z X — ye|? = \/|x| — 112+ |x2 —y2|2+ -+ |xn — yn|?. To see the Triangle Inequality, we will need

k=1
Minkowski Inequality If ¢;,b; € F i=1,2,--- /n, and 1 < p < oo, then

x’/z |a; +b;|P < (/Z |ai|P + {/Z |bi|P
i=1 i=1 i=1

NOW’ letx = (xl7x27"' 7xn)7y: (yl7Y27"' 7yn)7Z: (Z17Z2a"' aZVl) e

n
y) = Z |xk — yk|2 Add and Subtract z.
k=1

n
— \/Z |( Xp — Zk) + (Zk —yk)| Use Minkowski Inequality .

\/Z ok — 22+ \/2 2t — i

=d(x,z)+d(z,y)
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FIGURE 1

Example 3: 1,. Let p be a real number such that 1 < p < eo. I, is the space of all sequence x = {x, };~_, in [ such that

n=1

Zl [Xa|P < oo (x={x,};_, converges).
n—=

l={x={0)=, | ¥ [lP <o, xpeF.VneN}
1

n=

Define the mapping d : [, x [, — R by d(x,y) =d({xn},{ys}) = {/ Z |Xn — yn|P. Then d is a metric on /.
n=1

Example 4: C([a,b]). Let a,b be two real numbers such that a < b. C([a,b]) is the space of all continuous real-valued
functions f over [a,b].

C(la,b]) ={f : [a,b] — R f is continuous on [a,b]} Define the mappings d|,dw : C(|a,b]) x C([a,b]) — R as follows:
ds(f,8) = sup [f(x)—g(x)] and

x€[a,b]

b
di(f,g) = / | f(x) — g(x)| dx. Then d,d.. are metrics on C([a,b]).

Open sets and closed sets.
Definition 1.2:[Basic Definition]
Let (X,d) be a metric space. Let E C X, and let xp € X.

(1) Letx € X and r > 0. We define the open ball of radius r about x to be the set B,(x) = {y € X | d(x,y) < r}.
(2) We say that E is open set if for each x € E there is an € > 0 such that B¢(x) C E.
(3) We say that E is closed set if E = X \ E is open set.
(4) We say that xo is an interior point of E if there exist > 0 such that B,(xp) C E.
(5) We say that x is a limit point of E if for each r > 0, B,(xo) N (E \ {x0}) # 0.
(6) The set of all interior points of E is denoted by E°.
(7) The set of all limit points of E is denoted by E’.
(8) The closure set of E ,denoted by E,is E = EUE’.
(9) We say that x is a boundary point of E if for each r > 0, B,(xp) NE # ¢ and B,(xo) NE® # ¢.
(10) The set of all boundary points of E is denoted by JE.
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Below you will find some of elementary results about metric space- you should try to prove them-
Result 1.1:
Let (X,d) be a metric space. Let E C X. Then

(1) ¢ and X are both open and closed.

(2) An arbitrary union of open sets in X and a finite intersection of open sets in X are open sets in X.

(3) An arbitrary intersection of closed sets in X and a finite union of closed sets in X are closed sets in X.
(4) Gisopen & G =G".

(5) Gisclosed & G =G.

Definition 1.3:[Distance between sets and diameter |
Let (X,d) be a metric space. Let F,E C X, and let xg € X.
(1) The distance between E and xo € X is denoted by D(x, E), is defined by D(xo,E) = y1g£ d(xo,y).
(2) The distance between the sets E and F, denoted by D(F,E), is defined as D(F,E) = xe}‘l:lyfeEd (x,y).
(3) The diameter of the set F, denoted by 8(F), is defined as 8(F) = xs\lgp d(x,y).
Result 1.2:
Let (X,d) be a metric space. Let E,F C X. Then
(1) D(F,E) = D(E,F).
) Ifx€E & D(x,E) =0.
(3) 8(E) =9d(E).
4) IfE C F = 8(E) < 8(F).
(5) E={x} < d(E)=0.
(6) Letx,y € X, then |D(x,E) —D(y,F)| < d(x,y).

Convergence and completeness.
Definition 1.4:[Convergent and Cauchy Sequence]

Let (X,d) be a metric space. Let {x,} C X, be a sequence.
(1) We say that {x,} is convergent to x € X if for each € > 0 there exist N € N such that if n > N = d(x,,x) < €, and
we write lim x,, = x.
n—oo

(2) We say that {x, } is Cauchy if for each € > 0 there exist N € N such that if n,m > N = d(x,,x,) < €.
(3) We say that {x,} is bounded if there exist M > 0 such that 8({x, }) <M.
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Result 1.3:

Let (X,d) be a metric space. Let {x,} C X, be a sequence. Then

(1) If {x,} is convergent, then {x,} is bounded and its limit is unique.

(2) A Cauchy sequence is bounded.

(3) A convergent sequence is Cauchy.

@) Ifxp, — x,y, = yin X = d(x,,y,) — d(x,).

(5) If {x,} is convergent to x € X, then every subsequence {x,, } is convergent tox € X.

(6) If {x,} is Cauchy sequence and if {x,, } is convergent subsequence to x € X, then lim x, = x.

n—oo

Definition 1.5:[Complete Metric]
Let (X,d) be a metric space. We say that X is complete metric space if every Cauchy sequence in X converges to a point

inX.

Example 5:

n
(1) The spaces R", C" with d(x,y) =/ ¥ |xx — yi|* are complete.
k=1

(2) The space I, with the metric d(x,y) =d({xn},{yn}) = ¢ Z |, — yn|P is complete.
n=1

(3) The space .. with the metric d(x,y) = d({xn},{yn}) = sup |x, — yn| is complete.
n

(4) The space C([a,b]) with the metric dw(f,g) = sup |f(x) —g(x)| is complete.
x€la,b)

Example 6:
. . X242
(1) The spaces Q with d(x,y) = |x—y| is not complete. For example the sequence x; = 1,x,4] = S isin Q, but

Xn
lim x, = V2 ¢ Q.
n—oo

1
(2) The space C([—1,1]) with the metric d;(f,g) = / | f(x) — g(x)| dx. is not complete. For example let
-1

1, if —1<x<0;
fa(x) =< 1—nx, if0<x<1/n; . Then{f,} is Cauchy but it converges x_ o ¢ C([-1,1])
0, if1/n<x<1.

Theorem 1.1: []
Let E be a subset of a metric space (X,d) and let x € X. Then
(1) x€E < Ix,} CE > limx, = x.
n—soo

(2) x€Er= Hx,} CE > limx, =x.
R
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(1) (=) Suppose that x € E. Foreach n € N, B /,,(x) NE # ¢. Pick x, € By ;,,(x) NE. Now, d (x,,x) < 1= ,}E,I}ox” =x.
(&) If{x,} CE> ,}ngx" =x,thenforany r >0, 3 NeN>3ifn>N=d(x,x,) <r. Thus B,(x) NE # ¢.
Hence x € E.

(2) Suppose thst x € Er. Choose x; € E such that x; # x and d(x,x;) < 1. Now, choose x; € E \ {x} such that
d(x,x2) < min{d(x,x;),1/2}. Now, for each n > 3 pick x, € E\ {x} such that d(x,x,) < min{d(x,x,_1),1/n}.

Hence we have a sequence {x,} C E such that lim x, = x.
n—oo

Dense sets and Separable Spaces.
Definition 1.6:[Separable Spaces]
Let (X,d) be a metric space. Let E C X.

(1) We say that E is dense if E = X.

(2) We say that X is separable if it has a countable dense subset.

Example 7:

(1) The spaces R", C" with d(x,y) = , / i |xx — yk|? are separable.
k=1

=)

(2) The space [, with the metric d(x,y) = d({x,},{yn}) = Z X0 — yn|P.
n=1

(3) The space l. with the metric d(x,y) = d({x,},{y»}) = sup|x, — yu| is not separable.
n

(4) The space C([a,b]) with the metric de(f,g) = sup |f(x) —g(x)| is separable.
x€la,b]

Continuous Functions.

Definition 1.7:[Continuity]

Let (X,d,),(Y,d;) be a metric spaces. A function f : X — Y is called continuous at xo € X if foreache >0, 3 ad>0
such that x € X and d; (x,x0) < & = da2(f(x), f(x0)) < €. f is continuous on X if it is continuous at each point of X.

Theorem 1.2: []

Let (X,d)), (Y,d) be a metric spaces and let f : X — Y be a function Then, the following statements are equivalent:

(1) fis continuous on X.

(2) VxeXandV {x,} CX 3 limx, =x= lim f(x,) = f(x).

n—oo

(3) Foreach E isopeninY = f~!(E) is open in X
(4) For each F is closed in Y = f~!(E) is closed in X

() f(E)C f(E),Y ECX.

©) f~U(F)CfY(F),¥ FCY.
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Definition 1.8:[Homeomorphism]
Let (X,d1), (Y,d;) be a metric spaces.
(1) A function f : X — Y is called homeomorphism if f is a continuous bijective and f~! is continuous.

(2) A function f: X — Y is called isometry if & (f(x), f(y)) = di (x,y), xyeX.
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