King Abdulaziz University

0.5 Transformations of Functions

Dr. Hamed Al-Sulami

© 2008 hhaalsalmi@kau.edu.sa Prepared: November 11, 2008

http://www.kau.edu.sa/hhaalsalmi Presented: November 11, 2008, 2008

Algebra of Functions:

Definition .1: [The Sum, Difference, Product, and Quotient of two functions] Let f and g be functions with domains D(f) and D(g). Then the functions f + g, f - g, fg, and $\frac{f}{g}$ are defined as follows:

Name	Notation	Definition	Domain
Sum:	f+g	(f+g)(x) = f(x) + g(x)	$D(f)\cap D(g)$
Difference:	f-g	(f-g)(x) = f(x) - g(x)	$D(f)\cap D(g)$
Product:	fg	(fg)(x) = f(x)g(x)	$D(f)\cap D(g)$
Quotient:	$\frac{f}{g}$	$\left(rac{f}{g} ight)(x) = rac{f(x)}{g(x)}$	$(D(f)\cap D(g))\setminus\{x:g(x)=0\}$

EXAMPLE 1. Let $f(x) = x^2 + 1$ and $g(x) = \sqrt{2x-4}$. Find f + g, f - g, fg, f/g, and their domains.

Solution: Since $f(x) = x^2 + 1$ is a polynomial, then $D(f) = \mathbb{R}$. Also, since $g(x) = \sqrt{2x - 4}$ is an even root function, then to find the domain we solve the inequality

 $2x - 4 \ge 0 \Leftrightarrow 2x \ge 4 \Leftrightarrow x \ge 2$.

Hence $D(g) = [2, \infty)$. Now, $D(f) \cap D(g) = \mathbb{R} \cap [2, \infty) = [2, \infty)$.

(f+q)(x) = f(x) + q(x)By definition $= x^{2} + 1 + \sqrt{2x - 4}$ With $D(f + g) = [2, \infty)$, (f-q)(x) = f(x) - q(x)By definition $= x^{2} + 1 - \sqrt{2x - 4}$ With $D(f - g) = [2, \infty)$, (fg)(x) = f(x)g(x)By definition $= (x^{2} + 1)\sqrt{2x - 4}$ With $D(fg) = [2, \infty)$, $\left(\frac{f}{a}\right)(x) = \frac{f(x)}{a(x)}$ By definition $=\frac{x^2+1}{\sqrt{2\pi}}$

With $D(f+g) = [2,\infty) \setminus \{x : 2x - 4 = 0\},\$ With $D(f + q) = [2, \infty) \setminus \{2\} = (2, \infty)$.

EXAMPLE 2. Let $f(x) = x + \sqrt{x^2 - 1}$, $g(x) = \frac{2x\sqrt{4 - x^2}}{x + 1}$ and $h(x) = \frac{\sqrt{2x - 1}}{\sqrt[4]{x^2 - 5x + 6}}$. Find the domain of f, g and h.

Solution:

• Notice that $f(x) = x + \sqrt{x^2 - 1}$ is the sum of x and $\sqrt{x^2 - 1}$, then $D(f) = D(x)^{\circ} \cap D(\sqrt{x^2 - 1})^{\circ} = \mathbb{R} \cap (-\infty - 1] \cup [1, \infty) = (-\infty - 1] \cup [1, \infty).$ • Notice that $g(x) = \frac{2x\sqrt{4} - x^2}{x+1} = \frac{2x}{x+1} \cdot \sqrt{4-x^2}$ is the product of $\frac{2x}{x+1}$ and $\sqrt{4-x^2}$, then $D(g) = D(\frac{2x}{x+1})^{\textcircled{0}} \cap D(\sqrt{4-x^2})^{\textcircled{0}} = (-\infty, -1) \cup (-1, \infty) \cap [-2, 2] = [-2, -1) \cup (-1, 2].$ • Notice that $h(x) = \frac{\sqrt{2x-1}}{\sqrt[4]{x^2-5x+6}}$ is the quotient of $\sqrt{2x-1}$ and $\sqrt[4]{x^2-5x+6}$, then $D(h) = D(\sqrt{2x-1})^{\textcircled{0}} \cap D(\sqrt[4]{x^2 - 5x + 6})^{\textcircled{0}} \setminus \{x : x^2 - 5x + 6 = 0\}$ $= [1/2, \infty) \cap (-\infty, 2] \cup [3, \infty) \setminus \{2, 3\}$ $= [3, \infty) \setminus \{2, 3\} = (3, \infty).$

EXAMPLE 3. Let $g(x) = \sqrt{\frac{x}{x-1}}$. Find the domain of g.

Solution:

The function $g(x) = \sqrt{\frac{x}{x-1}}^{\odot}$ is an even root function, hence $\frac{x}{x-1} \ge 0$ (we are looking for (+) sign). Now, to solve the inequality $\frac{x}{x-1} \ge 0$, we find the zeros of the numerator and the denominator. x = 0 is the zero of numerator and $x - 1 = 0 \Leftrightarrow x = 1$ is the zero of the denominator. Now, we use the real line to find the sign of each expression x and x - 1.

Hence $D(g) = (-\infty, 0] \cup (1, \infty)$.

EXAMPLE 4. Let $f(x) = \frac{\sqrt{x}}{\sqrt{x-1}}$. Find the domain of f.

Solution: Notice that $f(x) = \frac{\sqrt{x}}{\sqrt{x-1}}$ is the quotient of \sqrt{x} and $\sqrt{x-1}$, then $D(h) = D(\sqrt{x}) \cap D(\sqrt{x-1}) \setminus \{x : x - 1 = 0\}$ $= [0, \infty) \cap [1, \infty) \setminus \{1\}$ $= [1, \infty) \setminus \{1\} = (1, \infty).$

6/8

The Composition of Functions

Definition .2: [Composition of two functions]

The composition of two functions f and g, written $f \circ g$, is defined by $(f \circ g)(x) = f(g(x))$ for all x such that x is in the domain of g and g(x) is in the domain of f.

Note 1: $D(f \circ g) = \{x : x \in D(g) \text{ and } g(x) \in D(f(g(x)))\} = D(g) \cap D(f(g(x))).$

EXAMPLE 5. If $f(x) = x^2 + 4$ and $g(x) = \sqrt{x-4}$. Find the domain of the following: $f \circ g$, and $g \circ f$.

Solution:

- 1. We have $(f \circ g)(x) = f(g(x)) = f(\sqrt{x-4}) = (\sqrt{x-4})^2 + 4 = x 4 + 4 = x$. $D(g) = [4, \infty)^{\textcircled{0}}$ and $D(f(g(x))) = D(x) = \mathbb{R}$. Hence $D(f \circ g) = D(g(x)) \cap D(f(g(x))) = \mathbb{R} \cap [4, \infty) = [4, \infty)$.
- 2. We have $(g \circ f)(x) = g(f(x)) = g(x^2 + 4) = \sqrt{x^2 + 4 4} = \sqrt{x^2} = |x|, D(f) = \mathbb{R}$, and $D(g(f(x))) = D(|x|) = \mathbb{R}$. Hence $D(g \circ f) = D(f(x)) \cap D(g(f(x))) = \mathbb{R} \cap \mathbb{R} = \mathbb{R}$.

EXAMPLE 6. If $f(x) = \sqrt{x}$ and $g(x) = \sqrt{1-x}$. Find the domain of the following: $f \circ g$, and $g \circ f$.

Solution:

1. We have $(f \circ g)(x) = f(g(x)) = f(\sqrt{1-x}) = \sqrt{\sqrt{1-x}} = \sqrt[4]{1-x}$. $D(g) = (-\infty, 1]^{\textcircled{0}}$ and $D(\sqrt[4]{1-x}) = (-\infty, 1]$. Hence $D(f \circ g) = D(g(x)) \cap D(f(g(x))) = (-\infty, 1]$. 2. We have $(g \circ f)(x) = g(f(x)) = g(\sqrt{x}) = \sqrt{1-\sqrt{x}}$, and $D(f) = [0, \infty)$. To find $D(\sqrt{1-\sqrt{x}})$ we have two conditions $x \ge 0$ and $1 - \sqrt{x} \ge 0$ $1 - \sqrt{x} \ge 0 \Leftrightarrow 1 \ge \sqrt{x}$ move \sqrt{x} to the other side $\Leftrightarrow \sqrt{x} \le 1$ rewrite the inequality $\Leftrightarrow (\sqrt{x})^2 \le 1^2$ square both sides $\Leftrightarrow x \le 1$ and since we have $0 \le x$, $\Leftrightarrow 0 \le x \le 1$

Hence $D(\sqrt{1-\sqrt{x}}) = [0,1]$ Hence $D(g \circ f) = D(f(x)) \cap D(g(f(x))) = [0,1] \cap [0,\infty) = [0,1].$