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Taylor and Maclaurin Series

Series Representations

Theorem .1: [The Form of a Convergent Power series]

If f is represented by a power series, f(x) =
∞∑

n=0

an(x − a)n for all x in an open interval I

containing a, then

an =
f (n)(a)

n!
and f(x) = f(a)+ f ′(a)(x− a)+

f ′′(a)
2!

(x− a)2 + · · ·+ f (n)(a)
n!

(x− a)n + · · ·

Taylor and Maclaurin Series

Definition .1: [Taylor and Maclaurin Series]
If a function f has derivatives of all orders at x = a, then the series
∞∑

n=0

f (n)(a)
n!

(x − a)n = f(a) + f ′(a)(x − a) +
f ′′(a)

2!
(x − a)2 + · · ·+ f (n)(a)

n!
(x − a)n + · · · is

called Taylor series for f(x) at a. Moreover, if a = 0, then the series is called the Maclaurin
series for f.
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Example 1. Find the Maclaurin series for f(x) = ex and its interval of convergence.

Solution:

f(x) = ex f(0) = e0 = 1 f ′(x) = ex f ′(0) = 1
f ′′(x) = ex f ′′(0) = 1 f ′′′(x) = ex f ′′′(0) = 1.

Hence f (n)(x) = ex and hence f (n)(0) = 1.

ex =
∞∑

n=0

f (n)(0)
n!

xn =
∞∑

n=0

1
n!

xn.

lim
n→∞

∣∣∣∣an+1

an

∣∣∣∣ = lim
n→∞

∣∣∣∣ xn+1

(n + 1)!
· n!
xn

∣∣∣∣
= lim

n→∞
|x|

(n + 1)
= 0 < 1.

Hence ex =
∞∑

n=0

f (n)(0)
n!

xn =
∞∑

n=0

xn

n!
, ∀x ∈ R. Thus

∞∑
n=0

1
n!

= e and
∞∑

n=0

3n

n!
= e3 �
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Example 2. Find the Maclaurin series for f(x) = sin x and its interval of convergence.

Solution:

f(x) = sin x f(0) = 0 f ′(x) = cos x f ′(0) = 1 f ′′(x) = − sin x f ′′(0) = 0

f ′′′(x) = − cos x f ′′′(0) = −1 f (4)(x) = sin x f (4)(0) = 0 f (5)(x) = cos x f (5)(0) = 1

f (6)(x) = − sin x f (6)(0) = 0 f (7)(x) = − cos x f (7)(0) = −1 f (8)(x) = sin x f (8)(0) = 0.

sin x =
∞∑

n=0

f (n)(0)
n!

xn

= f(0) + f ′(0)x +
f ′′(0)

2!
x2 +

f (3)(0)
3!

x3 +
f (4)(0)

4!
x4 + · · ·

= x − 1
3!

x3 +
1
5!

x5 − 1
7
x7 +

1
9
x9 + · · · =

∞∑
n=0

(−1)n

(2n + 1)!
x2n+1

lim
n→∞

∣∣∣∣an+1

an

∣∣∣∣ = lim
n→∞

∣∣∣∣ (−1)n+1x2n+3

(2n + 3)!
· (2n + 1)!
(−1)nx2n+1

∣∣∣∣ = lim
n→∞

|x|2
(2n + 3)(2n + 2)

= 0 < 1.

Hence sin x =
∞∑

n=0

(−1)n

(2n + 1)!
x2n+1, ∀x ∈ R. �
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Example 3. Find the Taylor series for f(x) = cosx at a = π/2 and its interval of conver-
gence.

Solution:

f(x) = cos x f(π/2) = 0 f ′(x) = − sinx f ′(π/2) = −1 f ′′(x) = − cos x f ′′(π/2) = 0

f ′′′(x) = sin x f ′′′(π/2) = 1 f(4)(x) = cos x f(4)(π/2) = 0 f(5)(x) = − sin x f(5)(π/2) = −1

f(6)(x) = − cos x f(6)(π/2) = 0 f(7)(x) = sinx f(7)(π/2) = 1 f(8)(x) = cos x f(8)(π/2) = 0.

cosx =
∞∑

n=0

f (n)(π/2)
n!

(x − π/2)n

= f(π/2) + f ′(π/2)(x − π/2) +
f ′′(π/2)

2!
(x − π/2)2 +

f (3)(π/2)
3!

(x − π/2)3 + · · ·

= −(x − π/2) +
1
3!

(x − π/2)3 − 1
5!

(x − π/2)5 + · · · =
∞∑

n=0

(−1)n+1

(2n + 1)!
(x − π/2)2n+1

lim
n→∞

∣∣∣∣an+1

an

∣∣∣∣ = lim
n→∞

∣∣∣∣ (−1)n+2(x − π/2)2n+3

(2n + 3)!
· (2n + 1)!

(−1)n+1(x − π/2)2n+1

∣∣∣∣ = lim
n→∞

|x − π/2|2
(2n + 3)(2n + 2)

= 0 < 1.

Hence cosx =
∞∑

n=0

(−1)n+1

(2n + 1)!
(x − π/2)2n+1, ∀x ∈ R. �
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Example 4. Find the Taylor series for f(x) = lnx at a = 1 and its interval of convergence.

Solution:

f(x) = ln x f(1) = 0 f ′(x) = x−1 f ′(1) = 1

f ′′(x) = −x−2 f ′′(1) = −1 f ′′′(x) = 2x−3 f ′′′(1) = 2

f(n)(x) = (−1)n(n − 1)!x−n f(n)(1) = (−1)n(n − 1)! for n ≥ 1

ln x =
∞∑

n=0

f (n)(1)
n!

(x − 1)n = f(1) + f ′(1)(x − 1) +
f ′′(1)

2!
(x − 1)2 +

f (3)(1)
3!

(x − 1)3 + · · ·

= 0 + (x − 1) − 1
2!

(x − 1)2 +
2!
3!

(x − 1)3 + · · · =
∞∑

n=1

(−1)n−1(n − 1)!
n!

(x − 1)n

ln x =
∞∑

n=1

(−1)n−1

n
(x − 1)n

lim
n→∞

∣∣∣∣ an+1

an

∣∣∣∣ = lim
n→∞

∣∣∣∣ (−1)n(x − 1)n+1

n + 1
· n

(−1)n−1(x − 1)n

∣∣∣∣ = lim
n→∞

n|x − 1|
n + 1

= |x − 1|.

Hence the power series converges on 0 < x ≤ 2.❍
?

Hence ln x =
∞∑

n=1

(−1)n−1

n
(x−1)n, ∀x ∈ (0, 2] and ln 2 =

∞∑
n=1

(−1)n−1

n
. See Example5 �
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Now, the power series is convergent if |x− 1| < 1. Hence the radius of convergence
is R = 1. The power series converges if

|x − 1| < 1 ⇔ −1 < x − 1 < 1 ⇔ 0 < x < 2.

Now, when x = 0,
∞∑

n=1

(−1)n+1

n
(0 − 1)n =

∞∑
n=1

−1
n

which is divergent (harmonic

series). When x = 2,
∞∑

n=1

(−1)n+1

n
(2 − 1)n =

∞∑
n=1

(−1)n+1

n
which is convergent by

the Alternating Series Test. So the interval of convergence is (0, 2].
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Example 5. Find the Taylor series for f(x) = lnx at a = 1 and its interval of convergence.

Solution: Let g(x) =
1
x

=
1

1 + x − 1
=

1
1 − (−(x − 1))

. Hence

1

x
=

1

1 − (−(x − 1))
shape of geometric power series

=

∞∑
m=0

(−(x − 1))m | − (x − 1)| < 1

=

∞∑
m=0

(−1)m(x − 1)m |x − 1| < 1

ln x =

∫
1

x
dx =

∞∑
m=0

(−1)m

∫
(x − 1)m dx − 1 < x − 1 < 1 ⇔ 0 < x < 2

ln x =

∞∑
m=0

(−1)m

m + 1
(x − 1)m+1 + C to find C, put x = 1

0 = ln 1 = 0 + C, ⇒ C = 0 Hence

ln x =
∞∑

m=0

(−1)m

m + 1
(x − 1)m+1 let n = m + 1, m = n − 1, m = 0 ⇒ n = 1

ln x =
∞∑

n=1

(−1)n−1

n
(x − 1)n 0 < x ≤ 2

�
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