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Alternating Series, Absolute and Conditional

Convergence

Alternating Series

Definition .1: [Alternating Series]
Let {𝑎𝑛}∞𝑛=1 be a sequence of positive real numbers. Series of the form

∑∞
𝑛=1(−1)𝑛+1𝑎𝑛 or∑∞

𝑛=1(−1)𝑛𝑎𝑛 is called alternating series.

Example 1. which of the following is an alternating series

1.
∞∑
𝑛=1

cos (𝑛𝜋)𝑛

𝑛2 + 1
2.

∞∑
𝑛=2

(−1)2𝑛
𝑛

Solution:

1. Since cos (𝑛𝜋) = (−1)𝑛, then
∞∑

𝑛=1

cos (𝑛𝜋)𝑛

𝑛2 + 1
=

∞∑
𝑛=1

(−1)𝑛𝑛
𝑛2 + 1

which is an alternating

series.

2. Since (−1)2𝑛 = 1, then
∞∑
𝑛=2

(−1)2𝑛
𝑛

=

∞∑
𝑛=2

1

𝑛
which is a harmonic series not an alter-

nating series.

□

    ▲ ◀ ▶ ▼   ■
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Theorem .1: [ Alternating Series Test]

The series
∞∑

𝑛=1
(−1)𝑛+1𝑎𝑛 converges if the following hold

1. 𝑎𝑛 > 0

2. 𝑎𝑛 ≥ 𝑎𝑛+1

3. lim
𝑛→∞ 𝑎𝑛 = 0

Proof: Let {𝑆𝑛} be the sequence of partial sum of
∞∑

𝑛=1
𝑎𝑛

𝑆2𝑛 = 𝑎1 − 𝑎2 + 𝑎3 − 𝑎4 + ⋅ ⋅ ⋅+ 𝑎2𝑛−1 − 𝑎2𝑛

= (𝑎1 − 𝑎2) + (𝑎3 − 𝑎4) + ⋅ ⋅ ⋅+ (𝑎2𝑛−1 − 𝑎2𝑛) ≥ 0,
because 𝑎𝑛 ≥ 𝑎𝑛+1. Hence 𝑆2𝑛 ≥ 0.

Also, 𝑆2𝑛 = 𝑎1− (𝑎2−𝑎3)− (𝑎4−𝑎5)−⋅ ⋅ ⋅− (𝑎2𝑛−2−𝑎2𝑛−1)−𝑎2𝑛 ≤ 𝑎1, because 𝑎𝑛 ≥ 𝑎𝑛+1

and 𝑎𝑛 ≥ 0 Hence 𝑆2𝑛 ≤ 𝑎1. Thus the subsequence {𝑆2𝑛} is an increasing bounded and
hence it converges. Thus lim

𝑛→∞𝑆2𝑛 exist. Now, since 𝑆2𝑛+1 = 𝑆2𝑛 + 𝑎2𝑛+1 and

lim
𝑛→∞ 𝑎2𝑛+1 = lim

𝑛→∞ 𝑎𝑛 = 0, then we have

lim
𝑛→∞𝑆2𝑛+1 = lim

𝑛→∞𝑆2𝑛 + lim
𝑛→∞ 𝑎2𝑛+1 = lim

𝑛→∞𝑆2𝑛 + 0 = lim
𝑛→∞𝑆2𝑛. Now, since the two subse-

quences {𝑆2𝑛} and {𝑆2𝑛+1} converge to the sam limit , then {𝑆𝑛} converges to that limit
and hence the series

∞∑
𝑛=1
(−1)𝑛+1𝑎𝑛 converges.

■
    ▲ ◀ ▶ ▼   ■
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Note 1: The Alternating series test tells only for the convergence, but not for divergence of
the given series. However, if lim

𝑛→∞ 𝑎𝑛 ∕= 0, then the series diverges, because of the divergence
test, not by the Alternating series test.

!"# $ lim
𝑛→∞ 𝑎𝑛 ∕= 0 %�
� �&' �(�� )	# *+
	��� +
,�-' �/ �0101�2�� ��3�3�2�� +
,�-'

.�0101�2�� ��3�3�2�� +
,�-' 4��� ��
,��� +
,�-' 5�6�7"0 ���
,�� ��3�3�2��

Example 2. Determine whether the series

1.

∞∑
𝑛=1

(−1)𝑛
𝑛

2.

∞∑
𝑛=2

(−1)𝑛𝑛
2𝑛+ 1

converges or diverges.

Solution:

1. Let 𝑎𝑛 =
1

𝑛
. Then 𝑎𝑛 =

1

𝑛
> 0 ∀ 𝑛 ∈ ℕ. Also, 𝑎𝑛+1 =

1

𝑛+ 1
<
1

𝑛
= 𝑎𝑛, and

lim
𝑛→∞ 𝑎𝑛 = lim

𝑛→∞
1

𝑛
= 0. Hence

∞∑
𝑛=1

(−1)𝑛
𝑛

converges by Alternating Series Test .

2. Let 𝑎𝑛 =
𝑛

2𝑛+ 1
. Since lim

𝑛→∞ 𝑎𝑛 = lim
𝑛→∞

𝑛

2𝑛+ 1
=
1

2
∕= 0 and hence the series diverges

by Divergence Test.

□

    ▲ ◀ ▶ ▼   ■
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Example 3. Determine whether the series converges or diverges

1.
∞∑
𝑛=2

(−1)𝑛
ln𝑛

2.
∞∑
𝑛=2

𝑛!

2𝑛

Solution:

1. Let 𝑎𝑛 =
1

ln𝑛
. Then 𝑎𝑛 =

1

ln𝑛
> 0 ∀ 𝑛 ≥ 1. Also, ln𝑛 ≤ ln (𝑛+ 1) ⇒ 𝑎𝑛+1 =

1

ln (𝑛+ 1)
<

1

ln𝑛
= 𝑎𝑛, and

lim
𝑛→∞ 𝑎𝑛 = lim

𝑛→∞
1

ln𝑛
= 0. Hence

∞∑
𝑛=1

(−1)𝑛
ln𝑛

converges by Alternating Series Test .

2. Let 𝑎𝑛 =
𝑛!

2𝑛
. Since

𝑛!

2𝑛
=
1 ⋅ 2 ⋅ 3 ⋅ ⋅ ⋅ (𝑛− 1) ⋅ 𝑛
2 ⋅ 2 ⋅ 2 ⋅ ⋅ ⋅ ⋅ 2 ⋅ 2

=
1

2
⋅ 2
2
⋅ 3
2
⋅ ⋅ ⋅ 𝑛− 1

2
⋅ 𝑛
2

>
1

2
⋅ 𝑛
2
=

𝑛

4
.

lim
𝑛→∞ 𝑎𝑛 ≥ lim

𝑛→∞
𝑛

4
=∞ ∕= 0 and hence the series diverges by Divergence Test.

□

    ▲ ◀ ▶ ▼   ■



Alternating Series, Absolute and Conditional Convergence 6/9

Example 4. Find an example of an alternating series
∞∑

𝑛=1
(−1)𝑛𝑎𝑛 such that lim

𝑛→∞ 𝑎𝑛 = 0,

but the series diverges

Solution: Let 𝑎𝑛 =

⎧⎨
⎩

1
𝑛 , if 𝑛 is odd;

1
2𝑛 , if 𝑛 is even.

. Clearly 𝑎𝑛 > 0. Then since lim
𝑛→∞

1
𝑛 = 0 =

lim
𝑛→∞

1
2𝑛 , we have lim𝑛→∞ 𝑎𝑛 = 0. Now, consider the series

∞∑
𝑛=1
(−1)𝑛𝑎𝑛

∞∑
𝑛=1

(−1)𝑛𝑎𝑛 = −𝑎1 + 𝑎2 − 𝑎3 + 𝑎4 + ⋅ ⋅ ⋅

= [𝑎2 + 𝑎4 + ⋅ ⋅ ⋅+ 𝑎2𝑛 + ⋅ ⋅ ⋅ ]− [𝑎1 + 𝑎3 + ⋅ ⋅ ⋅+ 𝑎2𝑛+1 + ⋅ ⋅ ⋅ ]

=

[
1

4
+
1

16
+ ⋅ ⋅ ⋅+ 1

22𝑛
+ ⋅ ⋅ ⋅

]
−
[
1

1
+
1

3
+ ⋅ ⋅ ⋅+ 1

2𝑛+ 1
+ ⋅ ⋅ ⋅

]

=

∞∑
𝑛=1

1

22𝑛
−

∞∑
𝑛=1

1

2𝑛+ 1

Now, the series
∞∑
𝑛=1

1
22𝑛 converges

? and the series
∞∑

𝑛=1

1
2𝑛+1 diverges.

? Hence their difference

is divergent. Thus
∞∑

𝑛=1
(−1)𝑛𝑎𝑛 diverges □

    ▲ ◀ ▶ ▼   ■

The series ∞∑
𝑛=1

1

22𝑛
=

∞∑
𝑛=1

1

4𝑛
=

∞∑
𝑛=1

(
1

4

)𝑛

which is a geometric series with 𝑟 = 1/4 < 1 and hence converges.

since

1 ≤ 𝑛 for all 𝑛 ≥ 1
2𝑛+ 1 ≤ 2𝑛+ 𝑛

2𝑛+ 1 ≤ 3𝑛 ⇔ 1

2𝑛+ 1
≥ 1

3𝑛

Hence
1

3𝑛
≤ 1

2𝑛+ 1
and since

∞∑
𝑛=1

1

3𝑛
=
1

3

∞∑
𝑛=1

1

𝑛
which is a harmonic series and

hence diverges. Thus
∞∑

𝑛=1

1
2𝑛+1 diverges.
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Absolute and Conditional Convergence.

Definition .2: [Absolutely and Conditionally Convergence ]

Let
∞∑
𝑛=1

𝑎𝑛 be a series of real numbers.

1. We say that
∞∑
𝑛=1

𝑎𝑛 converges absolutely if
∞∑

𝑛=1
∣𝑎𝑛∣ converges.

2. We say that
∞∑
𝑛=1

𝑎𝑛 converges conditionally if
∞∑

𝑛=1
𝑎𝑛 converges and

∞∑
𝑛=1

∣𝑎𝑛∣ diverges.

Example 5. Determine whether the given series converges absolutely or diverges condition-

ally.

∞∑
𝑛=1

(−1)𝑛
𝑛

Solution: The series
∞∑
𝑛=1

(−1)𝑛
𝑛

, converges by Alternating Series Test. ∣𝑎𝑛∣ =
∣∣∣∣ (−1)

𝑛

𝑛

∣∣∣∣ = 1

𝑛
.

Then
∞∑
𝑛=1

∣𝑎𝑛∣ =
∞∑

𝑛=1

1

𝑛
which is a Harmonic series diverges and hence,

∞∑
𝑛=1

(−1)𝑛
𝑛

converges

conditionally. □

    ▲ ◀ ▶ ▼   ■
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Example 6. Determine whether the given series converges absolutely or diverges condition-

ally.

∞∑
𝑛=1

(−1)𝑛
4𝑛

Solution: The series

∞∑
𝑛=1

(−1)𝑛
4𝑛

converges by Alternating Series Test.

Now, ∣𝑎𝑛∣ =
∣∣∣∣(−1)

𝑛

4𝑛

∣∣∣∣ =
(
1

4

)𝑛

. Then
∞∑
𝑛=1

∣𝑎𝑛∣ =
∞∑

𝑛=1

(
1

4

)𝑛

which is a Geometric series with

𝑟 = 1
4 < 1 converges and hence,

∞∑
𝑛=1

(−1)𝑛
4𝑛

converges absolutely. □

Theorem .2: [Absolutely Convergence]

If
∞∑
𝑛=1

∣𝑎𝑛∣ converges, then
∞∑
𝑛=1

𝑎𝑛 converges.

Proof: Since −∣𝑎𝑛∣ ≤ 𝑎𝑛 ≤ ∣𝑎𝑛∣ ⇒ 0 ≤ 𝑎𝑛 + ∣𝑎𝑛∣ ≤ 2∣𝑎𝑛∣, for all 𝑛 ≥ 1, and since
∞∑
𝑛=1

∣𝑎𝑛∣

converges, then by Comparison test, we have
∞∑
𝑛=1

𝑎𝑛 + ∣𝑎𝑛∣ converges.
Now, 𝑎𝑛 = 𝑎𝑛 + ∣𝑎𝑛∣ − ∣𝑎𝑛∣, and since the difference between two convergent series is
convergent, then

∞∑
𝑛=1

𝑎𝑛 converges.

■
    ▲ ◀ ▶ ▼   ■
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Example 7. Determine whether the series converges or diverges

1.

∞∑
𝑛=1

(−1)𝑛 sin−1
(
1
𝑛

)
𝑛3

2.

∞∑
𝑛=1

4− cos𝑛
2𝑛

Solution:

1. Since

∣∣∣∣∣
(−1)𝑛 sin−1

(
1
𝑛

)
𝑛3

∣∣∣∣∣ =
∣ sin−1

(
1
𝑛

)∣
𝑛3

≤ 𝜋/2

𝑛3
, since sin−1 𝑥 ≤ 𝜋/2? . Now, since

∞∑
𝑛=1

𝜋/2

𝑛3
is a 𝑝-series with 𝑝 = 3 > 1 converges. Hence

∞∑
𝑛=1

∣∣∣∣∣
(−1)𝑛 sin−1

(
1
𝑛

)
𝑛3

∣∣∣∣∣ is

convergent by Comparison Test. Thus

∞∑
𝑛=1

(−1)𝑛 sin−1
(
1
𝑛

)
𝑛3

is absolutely convergent

by Absolute Convergence.

2. Since

∣∣∣∣4− cos𝑛2𝑛

∣∣∣∣ ≤ 4 + ∣ cos𝑛∣
2𝑛

≤ 5

2𝑛
. Now, since

∞∑
𝑛=1

5

2𝑛
is a geometric series with

∣𝑟∣ = 1/2 < 1 converges. Hence
∞∑

𝑛=1

∣∣∣∣4− cos𝑛2𝑛

∣∣∣∣ is convergent by Comparison Test.

Thus

∞∑
𝑛=1

4− cos𝑛
2𝑛

is absolutely convergent by Absolute Convergence.

□

    ▲ ◀ ▶ ▼   ■

1

-1
1-1

�

�

−𝜋
2

𝜋
2

𝑦 = sin−1 𝑥
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