Math 203
 Lab Handout

Dr. Najwa Joharji

VECTORS:

To define a vector write the vector in the form $a \square\left[a_{1}, a_{2}, a_{3} \square\right.$ and then click ${ }^{(\times k)}=$.

Sum of vectors:

Example: $a \square\left[a_{1}, a_{2}, a_{3} \square\right.$ press $\stackrel{\& \times \infty}{=}, b \square b_{1}, b_{2}, b_{3} \square$ click $\stackrel{\& \times N=}{=}$, then
write $a \square b$ and click $=?$
Ex1 :
1- define the vectors $a \square\lceil 6,2,3 \square b \square \boxed{-1,5,2 \square}$
2- find $a \square b$

Dot product of vectors:

To find dot product (scalar product) write $a b$ and then click $=$?
Ex2 :
for a and b defined in Ex 1 find $a \square b$

Cross product of vectors:

To find cross product : write $a \square b$ and then click $=?$
Ex 3:
Find the cross product for : $u \square \square \square, 2,0 \square, v \square \square 0,3,1 \square$ then verify that it is orthognal to both uand v.

Length of a vector:

To find the length of a vector : define the vector then write $\|a\|$ and then click $=$ 霉 Ex 4:
find the length of the vector u and then find the unit vector that has the same direction of u.

Angle between two vectors:

To find the angle between two vectors:

$$
A \square B \square\|A\|\|B\| \cos \square
$$

where \square is the angle between the vectors A and B, you can use the dot product to find the angle between two vectors.

Example Define $A \square \square 1,2,-3 \square$ and $B \square \square-2,1,2 \square$ and solve the equation
$\cos \square \square \frac{A \| B}{\|A\|\|B\|}$, to get

Solution is: $\left\{\right.$ प८। $\left.-\arccos \left(\frac{1}{7} \sqrt{14}\right)\right\}$
Apply Evaluate Numerically to get $\bar{\square}$ 2.1347.

Ex 5:

Find the angle between the two vectors and determine whether they are orthognal:

```
1- \(a\) П \(\boxed{-5,3,7 \square, b \square\lceil 6,-8,2 \square}\)
2- \(u \square \square-1,2,5 \square, v \square\lceil\beta, 4,-1 \square\)
```

 The volume of the parallelepiped spanned by three vectors \(A, B\),
 and \(C\)

Example:
find the volume of the parallelepiped spanned by $[1,1,0 \square \square, 0,1 \square$ and $\square, 1,1 \square$.
How to plot Quadric surfaces:
To obtain an implicit plot of an equation involving three variables

1. Enter the equation in your document.
2. From the Plot 3D submenu, choose Implicit.

Ex 6:
Sketch and define then determine the axis and find traces of the following surfaces

```
\(1-\frac{x^{2}}{16}-\frac{y^{2}}{9} \square z^{2} \square-1\)
    2- \(\frac{x^{2}}{25} \square \frac{y^{2}}{9}-\frac{z^{2}}{16} \square 1\)
    3- \(z \square x^{2} \square \frac{y^{2}}{2}\)
    4- \(16 x^{2} \square 9 y^{2} \square 16 z^{2}-32 x-36 y \square 36 \square 0\)
    5- \(3 z \square-y^{2} \square x^{2}\)
    6- \(z^{2} \square x^{2}-y^{2} \square 0\)
```


Vector functions and space curves

To define a vector function : write the vector function in the form
$r \square \square \square \square \square \square g[t \square h \square \square \square$ and then click \square
to find derivativeof a vector function : write $\frac{d}{d t} r \square \square$ and click $=?$.

to plot a vector function :

1. define the vector function $r[\square \square$
2. From the Plot3D submenue, choose rectangular

Ex 7:
A) If $r \square \square \square \square \square t^{2}, t \exp \square-t \square \frac{\sin t}{t} \square$
B) $r \square \square \square \square, t^{2}, t^{3} \square$
C) $r \square \square \square \square-\frac{3}{2} \sin t, 1-\frac{3}{2} \cos t, t \square$
D) $r \square \square \square \square \cos t, \sin t, \ln t \square$

1. find $\square_{0} r$ tadt
2. find $\frac{d}{d t} r[t \square$
3. sketch $r[t \square$

function of several variables:

To define afunction of several variables :write the function $f \mathbb{x}, y \square$, then click \qquad to find the derivative of the function $f \backslash x, y \square$ write $\frac{\partial}{\partial y} f \square x, y \square$ and click $=?$ to find the double integral of the function $f\lceil x, y \square$: write $\underset{a c}{b d} \downarrow \mathbb{a}, y\lceil d y d x$ and click Ex 8:
For $f \square \frac{x^{2}-y^{2}}{x^{2} \square y^{2}}$ find

1. $\frac{\partial^{2} f}{\partial x^{2}}$
2. $\frac{\partial^{2} f}{\partial y^{2}}$
3. $\square^{12} f d y d x$

01

To plot a defined function f of two variables

1. Select the function name f or select the expression $f \square, y \square$
2. From the Plot 3D submenu, choose Rectangular.

Ex 9:
Sketch the function
A) $f\left\lceil x, y \square \square \frac{\sin x \sin y}{x y}\right.$
B) $f \square x, y \square \square \frac{-3 y}{x^{2} \square y^{2} \square 1}$

Gradiant of a function of several variables:

To evaluate the gradiant of a function of several variables: define the function f, then write ∇f and click $=$?

To plot a gradient field

1. Type an expression $f[\mathrm{l}, \mathrm{y} \square$
2. Leave the insertion point in the expression, and from the Plot 2D submenu, choose Gradient.

Ex 10 :
If A) $\left.f \square x y^{2} z^{3}, B\right) h \llbracket \pi, y \square \square x y \sin x y$, find the gradiant of the function and plot its graph.

Vector field

To find the divergent of a vector field : define the vector field ,then write $\nabla \square F$ and click $=$?
to find the curl of a vector field : define the vector field ,then write $\boldsymbol{\nabla} \square \boldsymbol{F}$ and click
\square
To plot a two-dimensional vector field

1. Type a pair of two-variable expressions
2. Leave the insertion point in the vector, and from the Plot 2D submenu, choose Vector Field

Ex 11:
For A) $F \square$

$$
\square\left(\frac{1}{\sqrt{\left(1 \square\left|y^{2}-t^{2}\right|^{2}\right)}}, \frac{y^{2}-t^{2}}{\sqrt{\left(1 \square\left|y^{2}-t^{2}\right|^{2}\right)}}\right)
$$

B) $F \square \square \mathrm{n} \square \square \square y^{2} \square \ln \square \square \square x^{2} \square$, plot F

To plot a three-dimensional vector field

1. Type three three-variable expressions, representing the x-, y-, and z-components of a vector field, into a vector.
2. Leave the insertion point in the vector.
3. From the Plot 3D submenu, choose Vector Field.

To change the view

1. Click the frame until a small box appears in the upper-right corner of the frame.
2. With the left mouse button held down, rotate the plot.

Ex 12:

For A) $F \square \llbracket z, 2 x z, z y \square$
B) $F \square \square \frac{y}{z},-\frac{x}{z}, \frac{z}{4} \square$
C) $F \square \square \bar{Z}, x z, x y \square$
find

1. $\nabla \square F$
2. $\nabla \square F$
3. sketch F.
