Gravity

Using the Earth’s gravitational field to study itsinternal structure has proven to be an extremely effective
means of probing structural variations at all levels depths and |ength scales within the Earth. To understand
how to interpret variations in the Earth’s gravitational field, we must first understand how gravitational
potential and acceleration arise from Newton's second Law.

Gravitational Acceleration.

Two point masses m; and m, at adistancer apart attract one another with aforce F,
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where G is the gravitational or Newtonian constant. In Sl units, G has avalue of 6.67 x 10! m’kg™s?.
Thisinverse square law of the gravitational attraction between two objects was deduced by Isaac Newton in
1666: the legend isthat an apple falling from atree gave him the revolutionary idea that the same force
that attracted the apple downwards could also account for the moon’s orbit of the Earth. Gravity isa
vector, which means the force has a magnitude and a direction associated with it, just like a velocity does.
The acceleration of the mass m; due to the presence of massm, is Gmy/r? and is directed toward m,, while
the acceleration of the massm, is G,/r? and is directed towards m.

Example: What isthe amplitude and direction of the gravitational force which attracts two 2-Kg
cantaloupes held 1 meter from each other?
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F=6.67x10" m*kg’s'x 2kgx 2kg/ (1 m)*> = 2.6 x 10™° kg/m &, and is oriented along the
line connecting the two cantaloupes. Thisforceisequal to about aten billionth of the gravitational force
either cantaloupe would feel when being pulled by the Earth's gravitational field.

We can talk about the gravitational acceleration which is caused by a given mass. In the above problem,
the force which m1 would feel due to the presence of m2 is
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Canceling the mass m1, we see that the gravitational acceleration which any mass would feel in the
presence of m2is:
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So thisis simply the accel eration which mass m2 causesin its vicinity. Notice that any object, regardless
of its mass, will feel the same acceleration.

In the case of a satellite orbiting the earth, we can calculate the orbit period, or the time it takes to complete
one full trip around the earth:
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Since the period T = 2pi/(angular frequency) then
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For r = 6371 Km, G= 6.67x10™ m’kg’s?, and M = 6x10** Kg, we get T = 5040 Seconds, or 84 minutes.
For r = 6471, meaning that the satellite isin orbit 100 Km above the Earth’s surface, the Period T is 86
minutes.

We can use the above to define the concept of gravitational potential energy.

Gravitational Potential and Gravitational Potential Energy

Often in analyzing the small variationsin the gravitational force which one would feel moving around the
surface of the earth, it is useful to talk about gravitational potential energy. For instance, when we drop a
tennis ball, the gravitational potential energy possessed by the ball is converted into kinetic energy asthe
ball falls, ie, the ball speedsup asit falls. To analyze this problem, we need to specify what we mean by
gravitational potential energy. We define Gravitational potential V due to mass ml as
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This describes the gravitational potential V caused by the mass m;.  The gravitational potential energy
which a mass m2 would possess due to the gravitational potential from mass m1 would be
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Once we define this potential, then any object of mass mx will have potential energy equal to -Gmimx/r .
We can then obtain the gravitational acceleration from the potential by taking its derivative with respect to
r.
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If we generalize to three dimensions, the acceleration is simply the gradient of the gravitational potential.:

a=—gradVv
=-VV

Note that gravitational acceleration actsin the direction which is perpendicular to the local gravitational
equipotential surface, ie, the surface over which the gravitational potential is constant.

Geoid

The geoid is simply any surface defined by constant gravitational potential, called an equipotential surface.
For a spherical mass, the geoid would assume the shape of a sphere, but for any distribution of mass which
deviates from a perfect, a surface of constant GP would assume a more complicated shape, which we
discuss below. Typicaly in studying the Earth’s geoid, the reference level is defined as a mean global sea
level. The ocean surfaceisitself an equipotential surface, and the mean, or global average, sealevel isin
genera not the same level as the sea surface at any given point on the globe. Thisis dueto the fact that
local mass anomalies under the ocean cause the ocean surface, or the geoid, to deform in their vicinity.
Since the earth is neither a perfect sphere nor a perfect oblate sphereoid, geodesists use the surface of the
oceans as the reference equipotential, since the liquid in the ocean follows an constant potential surface- if
it didn't, the water would flow down- potential (‘'downhill*) until the equipotential surface was created.

We can convert changes in the geoid into an equivalent geoid height anomalies by considering the work
done, or energy expended, to move an object from one equipotential surface to another. Remember that
work expended equals Force x Distance over which it isapplied. To move an object of unit mass (m1=1) a
distance R to R+h away from object m2, we have
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Now, since (R+h)R is approximately equal to R?> when R >> h, then this reduces to

AW = Gm2 ?
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and in general , the work done, or change in potential energy in moving an object of mass m1 from R to
R+h equals

AW =mg.h

This makes sense- by lifting an object of mass m1 up adistance h, you impart to it extra GPE of the amount
mlxgxh. Along the same lines, we can relate a changein just potential to achangein height. Then,

AV =g-h
Thus, we can describe a change in the geoid by the equivalent height an object would have to move up or
down to possess the same potential.

The lateral variationsin density distribution with the earth, although the result in gravity anomalies, can
therefore be described in terms of a geoid height anomaly. Since the gravitational acceleration is normal to
the geoid, atrough exists in the geoid whenever negative gravity anomaly, or mass deficit,, and likewise
there isabulge in the geoid wherever there is a mass excess, or positive gravity anomaly.
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Figure 1- @) A trough in the geoid, or negative geoid height anomaly, occurs over aregion with a mass
deficit, such as adepression in the seabed. A bulge in the geoid, or ositive geoid height anomaly, occurs
over regions of excess mass, such as an elevated region of the sea bed.

We can calculate the gravitational attraction which will accompany a simple shape such as a buried sphere.
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From above, we know that the gravitational accleration due to a sphere of mass mis Gm/r> However,
thisisthe acceleration in the radial direction, but we want to know what the acceleration straight down. So
we need sometrig:
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The gravity anomaly, 8g, istherefore given by
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So the gravity anomaly due to this buried sphere is therefore symmetrical about the center of the sphere and
essentialy is confined to awidth of about two to three times the depth of the sphere.

In the actual earth, the geoid moves about by a substantial amount, asillustrated below:

Geoid height variations, in meters. Amplitudes reach as much as +- 100 meters.



| sostasy

Isostasy is geophysical term which is an alternative statement of Archimedes principle of hydrostatic
equilbrium, ie, that a floating body displacesits own weight of water. A mountain can therefore be in
some sense compared to afloating iceberg or cork in water, in that it might be arelatively lighter mass of
granite afloat in a sea of heavier mantle materials such as olivine or pyroxene. |sostasy therfore requires
the surface layers of the earth to be rigid, and to float upon a denser substratum beneath. Therigid layer is
termed the lithosphere, while the denser material below is termed the asthenosphere.

To understand isostasy, we first have to consider how pressure builds up from the overlying rock as one
moves downward through the earth. This buildup in pressure results from hydrostatic equilibrium, or the
fact that all massisin equilibrium, ieitisnot moving. Consider ablock of rock deep in the Earth, shown
below, with area A, density p, and thicknessdz. If this chunk of rock isnot moving and is subject to the
overburden stress of all the rock piled on top of it, we say it isin hydrostatic equilibrium, and all the forces
on it must sum to zero.

density p, thickness dz, Area A. df ﬂ

Top Face: The force acting along the top of the cube equals Pressure x area.

Bottom Face: The force acting on the bottom of the cube equals the force along the top face plusthe
weight of the cube itself: Pressure*Area+ dz*Area*p*g.
Thus, we have:

dForce=d Pressure* Area = Pressure* Area+dz* Area* r* y. — Pressure* Area
=dz* Area* p* g
dPressure=dz* p* g
dP

E:PQ

If p and g depend on depth z, then to solve for the pressure at some depth R we must integrate from the
surface down to depth R:

Pressure_at_R=P(R) = [ p(2)9(2)dz

The other key ingredient in understanding isostasy is Archimedes Principle- remember that a floating
object displacesits mass of water. Let's calculate how far above the water surface level and iceberg should
float, given that the density of ice is about 90% the density of water.

Example: How high does an iceberg extend below the waterline, if it sticks up by an amount equal to H?

Hi

p=9 Water
Hr p—1



Let's suppose the cross section of theiceis A. Then the mass of ice in the iceberg equals

Mass = A* (Hr + Hi)* p = A*(Hr + Hi)*.9
and that mass equal s the mass displaced by the water:

Mass, . = A*(Hr)* p=A*(Hr)*1

Equating these yields
Mass, e = Mass,, =

Ho = TH, = 11H,
9

So, the iceberg sticks up out of the water by an amount equal to about 10% of the amount it extends below
the surface.

Airy | sostasy

The same type of analysis can be applie to mountains, if one assumes they are in isostatic equilibrium with
the surrounding host rock. We define two general types of isostasy in geophysics, the first is called Airy

I sostasy, and thisis the exact same mechanism as the iceberg above. Here, mountains are thought to have
roots which extend down below the mountains, into the mantle of the earth, which is denser. The
mountains, like icebergs, float in a sea of heavier rock. Asin the iceberg case, we can describe how deep
amountain’s root must extend by calculating it in terms of how high the mountain is above the surrounding
landscape and the relative densities of the two materials. In this case, we must add up the overlying mass
of rock for both the mountains and the non-mountainous areas and equate them.

Depth of Compensation

How far down do we need to go in terms of adding up the overlying mass of rock? To the bottom of the
root- below this point , the densities of rocks are the same, so there’s no point in adding themin. We call
the bottom of the root the depth of compensation- at this depth, they hydrostatic pressures are the same
regardless of whether or not we're under a mountain or not.

Calculating the depth of the Root.
To calculate the depth of the root for a mountain of height h, above sealevel, we have

sea level h¢ wate
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Similarly, if we we have abasin full of \/\}éfer, rather than amountai n, we can calculate the amount of
missing light material, or the anti-root, that must exist to cause the basin to sink so low. In this case,



— d(pw_pu)

Ps— Py
To summarize, Airy Isostasy is the mechanisms by which mountains 'float’ on the mantle. Another type of
isostasy is possible, however, which isknown as Pratt | sostasy.
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Pratt | sostasy

The mechanisms by which mountains are held up in Pratt isostasy is lateral variationsin density, rather
than deep continental roots extending down into the mantle. In this model, we assume that the height of the
mountains vary simply as their density varies, much in the way that styrofoam will float higher on water
than will waterlogged wood, for instance. Asin Airy Isostasy, we have a depth of compensation equal to
the depth of the bottom of the continent. However, in this case, we compute what the different densities
must be to support the variable height mountains observed. The assumption here is that the bottom of the

all the mountains exists at the same depth.  Solving for the relative densities, we have

p,D=(h+D)p,
=(h, +D)p,
= (D_d)pd +dpw

sea level h,$ l4¢_‘ water
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In general, most continental regimes consist of both Airy and Pratt Isostasy. The Sierra Nevada range, for
instance, is known seismically to not have aroot, so it is both lighter than the surround rock, but it also is
dynamically supported by the mantle.

Gravity Corrections

When we go out and measure the gravity over a mountain range or basin, there are several corrections that
we have to apply to what we measure before we can interpret our resultsin terms of the structures which
produce them.

Thefirst correction comes from the fact that the earth is not a perfect sphere, but israther an
oblate spherioid, as shown below.  The reference gravity formula adopted by the International
Association of Geodesy in 1967 is

g(A) = g1+ asin’ A +Bsin* A
where 1 isthe latitude of the point, and o and 3 are coefficients equal to , respectively, 5.27 x 10° and
2.34x 10°, and g, isthe value of gravity at the equator (latitude = 0), 9.780 m/s%.
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The averaged shape of the earth, calculated by assuming that the earth is symmetric about is rotation axis
(solid line), compared with a spheroid of flattening 1/298.25).

Thisformulafor gravity as afunction of latitude takes into account the fact that earth is not a sphere, and so
gravity should not be uniform along it's surface. It depends on whether you're measuring at the poles,
where the radius is shortest, or at the equator, where the radius is longest.

The next correction that has to be made allows for the fact that the point at which the measurement is made
istypically not at sealevel, which iswhat g(4) above describes. Typically, gravity is measured off on a
mountain top or in an oceanic basin somewhere. So we have to take into account that we're not at sealevel.
This correction, known as the free air correction, only adjusts for the fact that we're not at sealevel- it
makes no allowance for any material that may exist between sealevel and the point we're standing on, ie,
the mountain underneath us: all such material is assumed to be air. To solve for this correction, we use the
inverse square law and assume that the earth is a perfect sphere. Asyou might guess, the gravity at
elevation h, gy, isjust the gravity at sealevel, go, multiplied times the ratio of the two radiuses:

2

g(h) = g(i]

R+h
where R is the radius of the earth to sealevel, and h is our distance above sealevel. Since h << R, we can
approximate this with the first term of the binomial expansion (remember: (1+a)° = 1+ba+...... , and we

keep only the first two terms)
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To calculate the free air correction , we then subtract this value from the gravity at sealevel:

2hg,
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As gravity decreases with height above the surface, points above sealevel are corrected back to the value
they would have at sealevel by adding in this correction 8g;. The correction amountsto 3.1 x 10° m /s?
per meter of elevation.

The free air anomaly, not to be confused with the free air correction, is then the measured value of gravity,
Oobss With the two corrections for the non-spherical earth and the free air applied:

Of = Gobs ™ g(/l) + ng

2h
= G- g(z)(l—E)

Notice the signs that each correction has: the free air correction is positive, because we're adding in gravity
that would be there if the measuring point were at sealevel, which it’s not. g(4) is subtracted because we're
subtracting away the reference earth model to obtain the free air anomaly gy.

There are two other corrections we are routinely applied to gravity measurements, and these, as you might
guess, take into account the fact that it's typically not air which lies between the measuring point at altitude
h and sealevel, but rock. Thefirst is called the Bouguer correction, which allows for the gravitational
attraction of aflat, infinite plane of rock of thickness h lying between the measuring point and sea level.
This correction is given by

&g = 22Gph
where G is the gravitational constant, p isthe density of the infinite plate of rock between height h and sea

level. Taking G = 6.67x10™* m*kg™s* and assuming a crustal density of 2.7 g/cm?, the Bouguer correction
is 1.1 x10° m/s? per meter of elevation.

The second correction is much smaller, and simply accounts for the fact that typically mountains are not
infinite planes of rock, asis the assumption above, but rather have peaks and valleys. Thiscorrectionis
known astheterrain correction, 8g;, and is calculated numerically using a set of templates or a Digital
Elevation Model which shows the topography. Except in regions of exceptional topography, thisterm can
usually be ignored.

The Bouguer anomaly, not to be confused with the Bouguer correction above, isthe free air anomaly with
these two extra corrections applied:
Os= Or-00s + 00

= Jobs~ g(ﬂ') + ng - 593 + @T

Notice again the sign conventions. This Bouguer anomaly is the observed value of gravity minusthe
reference value at the latitude of measurement plus the correction needed to adjust the altitude of
measurement back to sea level minus the gravitational acceleration caused by the rock between the altitude
of measurement and sealevel. Since we have allowed for the attraction of the rock above sealevel, the
Bouguer anomaly represents the gravitational attraction of the material below sea level.

The free air anomaly is usually used for gravity measurements at sea. It is comparable to the Bouguer
anomaly over continents, since the measurements are then all corrected to the sealevel datum. If a Bouguer
anomaly is required for oceanic gravity measurements, it must be calculated by replacing the seawater with
rocks of average crustal density. A terrain model must then also be applied to account for topography
along the seabed.



We can use gravity measurements to determine whether an areaisin isostatic equilibrium. If aregionisin
isostatic equilibrium, there should be no gravity anomaly and hence no excess or lack of massabove the
compensation depth. However, in practice, interpreting gravity measurementsis a convoluted process.

As an example, take the mountains shown above which are in 100% isostatic compensation of the Airy
type. The Bouguer anomaly across these mountains is negative, since below sealevel thereis amass
deficit under the mountains, ie, the low density root is holding the overlying mountains up. The Bouguer
anomaly reflects the fact that the overlying mountains have been removed from the correction, which
leaves only the mass deficit at depth unaccounted for, which causes the negative Bouguer anomaly.

The free air anomaly, on the other hand, will be slightly positive, since this anomaly only takes into account
the fact that we're above sea level in our measurements and doesn't take into account the distribution of
mass below us. The slight positive reading comes from the fact that the overlying mountain is closer to us
and and our point of measurement than is the compensating low density material at depth, and since
graviational acceleration drops off as 1/distance’, the closer, mountain attraction io stronger than the more
distant lack of attraction due to the mass deficit in the root, which resultsin adight positive free air
anomaly.

The simplest way to determine whether a large-scale structure such as a mountain chain isin isostatic
equilibrium isto use the free air anomaly. If astructureistotally compensated, away from the edges of the

structure the free air anomaly will be very small. Near the edgesis difficult to discern. If the structureis
only partially compensated, the or not at all, then the free air anomaly will be strongly positive, up to
several hundred millgals, while the Bouguer anomaly will be about zero. Free air anomalies are always
almost isostatic anomalies. They do not tell you what type of compensation is ocurring (ie, Pratt versus
Airy), but if compensation of any mechanism is complete, then the free air anomaly will be nearly zero.

Gravity Profile Examples (below)
The examples below show several gravity anomaly profiles across isostatic and non-isostatically
compensated mountains. Inthe example, (a), compensation iscomplete. The free air anomaly is nearly
zero away fromthe edges, but otherwise dightly positive, because the mass excess of the mountain is
compensated by the mass excess at depth, but the closer mass excess of the mountain produces a dightly
stronger positive gravity anomaly then the negative anomaly caused by the deficit at depth. The Bouguer
anomaly, on the other hand, is strongly negative, since it accounts for the gravity anomaly produced by the
mountain but not the lack of gravity produced by the mass deficit at depth.

Skipping (b) for now, in (c), which is totally uncompensated, the Bouguer anomaly is zero since the thereis
no root to cause the negative anomaly. The free air anomaly is extremely positive, since we've only
corrected for the altitude by assuming everything between sealevel and our the atitude is air, when in fact
it isrock and has a strong gravity signal associated with it.

In (b), the free air correction is moderately positive, while the Bouguer anomaly is moderately negative.
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