
Gravity

Using the Earth’s gravitational field to study its internal structure has proven to be an extremely effective
means of probing structural variations at all levels depths and length scales within the Earth.  To understand
how to interpret variations  in the Earth’s gravitational field, we must first understand how gravitational
potential and acceleration arise from Newton’s second Law.

Gravitational Acceleration.

Two point masses m1 and m2 at a distance r apart attract one another with a force F,

where G is the gravitational or Newtonian constant.  In SI units, G has a value of 6.67 x 10-11 m3kg-1s-2.
This inverse square law of the gravitational attraction between two objects was deduced by Isaac Newton in
1666:  the legend is that an apple falling from a tree gave him the revolutionary idea that the same force
that attracted the apple downwards could also account for the moon’s orbit of the Earth.   Gravity is a
vector, which means the force has a magnitude and a direction associated with it, just like a velocity does.
The acceleration of the mass m1 due to the presence of mass m2  is Gm2/r

2  and is directed toward m2, while
the acceleration of  the mass m2 is G1/r

2 and is directed towards m1.

Example:  What is the  amplitude and direction of the  gravitational force which attracts two 2-Kg
cantaloupes held 1 meter from each other?

F = 6.67 x 10-11 m3kg-1s-1 x 2 kg x 2 kg / (1 m)2  = 2.6 x 10-10  kg/m s2, and is oriented along the
line connecting the two cantaloupes.  This force is equal to about  a ten billionth of the gravitational force
either cantaloupe would feel when being pulled by the Earth’s gravitational field.

We can talk about the gravitational acceleration which is caused by a given mass.  In the above problem,
the force which m1 would feel due to the presence of m2 is

Canceling the mass m1, we see that the gravitational acceleration which any mass would feel in the
presence of m2 is:
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So this is simply the acceleration which mass m2 causes in its vicinity.  Notice that any object, regardless
of its mass, will feel the same acceleration.

In the case of a satellite orbiting the earth, we can calculate the orbit period, or the time it takes to complete
one full trip around the earth:

Since the period T = 2pi/(angular frequency) then

For r = 6371 Km, G= 6.67x10-11 m3kg-1s-2 , and M = 6x1024 Kg,  we get T = 5040 Seconds, or 84 minutes.
For r = 6471, meaning that the satellite is in orbit 100 Km above the Earth’s surface, the Period T is 86
minutes.

We can use the above to define the concept of gravitational potential energy.

Gravitational Potential and Gravitational Potential Energy

  Often in analyzing the small variations in the gravitational force which one would feel moving around the
surface of the earth, it is useful to talk about  gravitational potential energy.  For instance, when we drop a
tennis ball, the gravitational potential energy possessed by the ball is converted into kinetic energy as the
ball falls, ie, the ball speeds up as it falls.   To analyze this problem, we  need to specify what we mean by
gravitational potential energy.  We define Gravitational potential V due to mass m1 as

This describes the gravitational potential V caused by the mass m1.   The gravitational potential energy
which a mass m2 would possess due to the gravitational potential from mass m1 would be 

Once we define this potential,  then  any object of mass mx will have potential energy equal to -Gm1mx/r .
We can then obtain the gravitational acceleration from the potential by taking its derivative with respect to
r.
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If we generalize to three dimensions, the acceleration is simply the gradient of the gravitational potential.:

Note that gravitational acceleration acts in the direction which is perpendicular to the local gravitational
equipotential surface, ie, the surface over which the gravitational potential is constant.

Geoid

 The geoid is simply any surface defined by constant gravitational potential, called an equipotential surface.
For a spherical mass, the geoid would assume the shape of a sphere, but for any distribution of mass which
deviates from a perfect, a surface of constant GP would assume a more complicated shape, which we
discuss below. Typically in studying the Earth’s geoid, the reference level is defined as a mean global sea
level.  The ocean surface is itself an equipotential surface, and the mean, or global average, sea level is in
general not the same level as the sea surface at any given point on the globe.  This is due to the fact that
local mass anomalies under the ocean cause the ocean surface, or the geoid, to deform in their vicinity.
Since the earth is neither a perfect sphere nor a perfect oblate sphereoid, geodesists use the surface of the
oceans as the reference equipotential, since the liquid in the ocean follows an constant potential surface- if
it didn't, the water would flow down- potential ('downhill')  until the equipotential surface was created.

We can convert changes in the geoid into an equivalent geoid height anomalies by considering the work
done, or energy expended, to move an  object from one equipotential surface to another.  Remember that
work expended equals Force x Distance over which it is applied.  To move an object of unit mass (m1 =1) a
distance R to R+h away from object m2, we have

Now, since (R+h)R is approximately equal to R2  when R >> h, then this reduces to

r

V

∂
∂=

gradVa −=

V−∇=

drFdW •=

dr
r

Gm
⋅=

2
2

∫
+

=∆=∆
hR

R

dr
r

mG
GPEW

2

2

R

Gm

hR

Gm 22 −
+

−=

( ) 





+

++−=
RhR

hRR
Gm2

22
R

h
GmW =∆



and in general , the work done, or change in potential energy in moving an object of mass m1 from R to
R+h equals

This makes sense- by lifting an object of mass m1 up a distance h, you impart to it extra GPE of the amount
m1xgxh.  Along the same lines, we can relate a change in just potential to a change in height.  Then,

Thus, we can describe a change in the geoid by the equivalent height an object would have to move up or
down to possess the same potential.

The lateral variations in density distribution with the earth, although the result in gravity anomalies, can
therefore be described in terms of a geoid height anomaly.  Since the gravitational acceleration is normal to
the geoid, a trough exists in the geoid whenever negative gravity anomaly, or mass deficit,, and likewise
there is a bulge in the geoid wherever there is a mass excess, or positive gravity anomaly.

Figure 1- a)  A trough in the geoid, or negative geoid height anomaly, occurs over a region with a mass
deficit, such as a depression in the sea bed.  A bulge in the geoid, or ositive geoid height anomaly, occurs

over regions of excess mass, such as an elevated region of the sea bed.

We can calculate the gravitational attraction which will accompany a simple shape such as a buried sphere.
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From above, we know that the gravitational accleration due to a sphere of mass m is Gm/r2.    However,
this is the acceleration in the radial direction, but we want to know what the acceleration straight down. So
we need some trig:

The gravity anomaly, δgz  is therefore given by

So the gravity anomaly due to this buried sphere is therefore symmetrical about the center of the sphere and
essentially is confined to a width of about two to three times the depth of the sphere.

In the actual earth, the geoid moves about by a substantial amount, as illustrated below:

Geoid height variations, in meters.  Amplitudes reach as much as +- 100 meters.
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Isostasy
Isostasy is geophysical term which is an alternative statement of Archimedes principle of hydrostatic
equilbrium, ie, that a floating body displaces its own weight of water.  A mountain can therefore be  in
some sense compared to a floating iceberg or cork in water, in that it might be a relatively lighter mass of
granite afloat in a sea of heavier mantle materials such as olivine or pyroxene.  Isostasy therfore requires
the surface layers of the earth to be rigid, and to float upon a denser substratum beneath.  The rigid layer is
termed the lithosphere, while the denser material below is termed the asthenosphere.

To understand isostasy, we first have to consider how pressure builds up from the overlying rock as one
moves downward through the earth.  This buildup in pressure results from hydrostatic equilibrium, or the
fact that all mass is in equilibrium,  ie it is not moving.  Consider a block of rock deep in the Earth, shown
below, with area A, density ρ,  and thickness dz.  If this chunk of rock is not moving and is subject to the
overburden stress of all the rock piled on top of it, we say it is in hydrostatic equilibrium,  and all the forces
on it must sum to zero.

density ρ, thickness dz, Area A.

Top Face:  The force acting along the top of the cube equals Pressure x area.

Bottom Face:  The force acting on the bottom of the cube equals the force along the top face plus the
weight of the cube itself:  Pressure*Area +  dz*Area*ρ∗g.
Thus, we have:

If  ρ and g depend on depth z, then to solve for the pressure at some depth R we must integrate from the
surface down to depth R:

The other key ingredient in understanding isostasy is Archimedes Principle- remember that a floating
object displaces its mass of water.  Let’s calculate how far above the water surface level and iceberg should
float, given that the density of ice is about 90% the density of water.

Example:  How high does an iceberg extend below the waterline, if it sticks up by an amount equal to H?
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Let’s suppose the cross section of the ice is A.  Then the mass of ice in the iceberg equals

and that mass equals the mass displaced by the water:

Equating these yields

So, the iceberg sticks up out of the water by an amount equal to about 10% of  the amount it extends below
the surface.

Airy Isostasy
The same type of analysis can be applie to mountains, if one assumes they are in isostatic equilibrium with
the surrounding host rock.  We define two general types of isostasy in geophysics, the first is called Airy
Isostasy, and this is the exact same mechanism as the iceberg above.  Here, mountains are thought to have
roots which extend down below the mountains, into the mantle of the earth, which is denser. The
mountains, like icebergs, float in a sea of heavier rock.  As in the iceberg case, we can describe how deep
a mountain’s root must extend by calculating it in terms of how high the mountain is above the surrounding
landscape and the relative densities of the two materials.  In this case, we must add up the overlying mass
of rock for both the mountains and the non-mountainous areas and equate them.

Depth of Compensation
How far down do we need to go in terms of adding up the overlying  mass of rock?  To the bottom of the
root- below this  point , the densities of rocks are the same, so there’s no point in adding them in.  We call
the bottom of the root the depth of compensation- at this depth, they hydrostatic pressures are the same
regardless of whether or not we’re under a mountain or not.

Calculating the depth of the Root.
To calculate the depth of the root for a mountain of height h1 above sea level, we have

Similarly, if we we have a basin full of water, rather than a mountain, we can calculate the amount of
missing light material, or the anti-root, that must exist to cause the basin to sink so low. In this case,
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To summarize, Airy Isostasy is the mechanisms by which mountains ’float’ on the mantle. Another type of
isostasy is possible, however, which is known as Pratt Isostasy.

Pratt Isostasy
The mechanisms by which mountains are held up in Pratt isostasy is lateral variations in density, rather
than deep continental roots extending down into the mantle.  In this model, we assume that the height of the
mountains vary simply as their density varies, much in the way that styrofoam will float higher on water
than will waterlogged wood, for instance.  As in Airy Isostasy, we have a depth of compensation equal to
the depth of the bottom of the continent.  However, in this case, we compute what the different densities
must be to support the variable height mountains observed. The assumption here is that the bottom of the
all the mountains exists at the same depth.   Solving for the relative densities, we have

In general, most continental regimes consist of both Airy and Pratt Isostasy.  The Sierra Nevada range, for
instance, is known seismically to not have a root, so it is both lighter than the surround rock, but it also is
dynamically supported by the mantle.

Gravity Corrections

When we go out and measure the gravity over a mountain range or basin, there are several corrections that
we have to apply to what we measure before we can interpret our results in terms of the structures which
produce them.

The first correction comes from the fact that the earth is not a perfect sphere, but is rather an
oblate spherioid, as shown below.     The reference gravity formula  adopted by the International
Association of Geodesy in 1967 is

g(λ) = gc(1 + α sin2 λ + β sin4 λ
where λ  is the latitude of the point, and  α  and β  are coefficients  equal to , respectively, 5.27 x 10-3  and
2.34 x 10-5, and gc  is the value of gravity at the equator (latitude = 0), 9.780 m/s2.
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The averaged shape of the earth, calculated by assuming that the earth is symmetric about is rotation axis
(solid line), compared with a spheroid of flattening 1/298.25).

This formula for gravity as a function of latitude takes into account the fact that earth is not a sphere, and so
gravity should not be uniform along it’s surface.  It depends on whether you’re measuring at the poles,
where the radius is shortest, or at the equator, where the radius is longest.

The next correction that has to be made allows for the fact that the point at which the measurement is made
is typically not at sea level, which is what g(λ)  above describes. Typically, gravity is measured off on a
mountain top or in an oceanic basin somewhere.  So we have to take into account that we’re not at sea level.
This correction, known as the free air correction, only adjusts for the fact that we’re not at sea level- it
makes no allowance for any material that may exist between sea level and the point we’re standing on, ie,
the mountain underneath us:  all such material is assumed to be air.  To solve for this correction, we use the
inverse square law and assume that the earth is a perfect sphere.  As you might guess, the gravity at
elevation h , gh, is just the gravity at sea level, g0, multiplied times the ratio of the two radiuses:

where R is the radius of the earth to sea level, and h is our distance above sea level.  Since h << R, we can
approximate this with the first term of the binomial expansion (remember: (1+a)b = 1+ba+……, and we
keep only the first two terms)

To calculate the free air correction , we then subtract this value from the gravity at sea level:
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As gravity decreases with height above the surface,  points above sea level are corrected back to the value
they would have at sea level by adding in this correction  δgf.  The correction amounts to 3.1 x 10-6 m /s2

per meter of elevation.

The free air anomaly, not to be confused with the free air correction, is then the measured value of gravity,
gobs.   with the two corrections for the non-spherical earth and the free air applied:

gf = gobs - g(λ) + δgf

Notice the signs that each correction has:  the free air correction is positive, because we’re adding in gravity
that would be there if the measuring point were at sea level, which it’s not. g(λ) is subtracted because we're
subtracting away the reference earth model to obtain the free air anomaly gf.

There are two other corrections we are routinely applied to gravity measurements, and these, as you might
guess, take into account the fact that it's typically not air which lies between the measuring point at altitude
h and sea level, but rock.  The first is called the Bouguer correction, which allows for the gravitational
attraction of a flat, infinite plane of rock of thickness h lying between the measuring point and sea level.
This correction is given by

where G is the gravitational constant, ρ is the density of the infinite plate of rock between height h and sea
level.  Taking G = 6.67x10-11 m3kg-1s-2 and assuming a crustal density of 2.7 g/cm3, the Bouguer correction
is 1.1 x10-6 m/s2 per meter of elevation.

 The second correction is much smaller, and simply accounts for the fact that typically mountains are not
infinite planes of rock, as is the assumption above, but rather have peaks and valleys.  This correction is
known as the terrain  correction, δgt, and is calculated numerically using a set of templates or a Digital
Elevation Model which shows the topography.  Except in regions of exceptional topography, this term can
usually be ignored.

The Bouguer anomaly, not to be confused with the Bouguer correction above, is the free air anomaly with
these two extra corrections applied:

gB= gf -δgB +δgt

 = gobs - g(λ) + δgf - δgB +δgT

Notice again the sign conventions.  This Bouguer anomaly is the observed value of gravity minus the
reference value at the latitude of measurement plus the correction needed to adjust the altitude of
measurement back to sea level minus the gravitational acceleration caused by the rock between the altitude
of measurement and sea level.  Since we have allowed for the attraction of the rock above sea level, the
Bouguer anomaly represents the gravitational attraction of the material below sea level.

The free air anomaly is usually used for gravity measurements at sea.  It is comparable to the Bouguer
anomaly over continents, since the measurements are then all corrected to the sea level datum. If a Bouguer
anomaly is required for oceanic gravity measurements, it must be calculated by replacing the seawater with
rocks of average crustal density.  A terrain model must then also be applied to account for topography
along the seabed.
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We can use gravity measurements to determine whether an area is in isostatic equilibrium.  If a region is in
isostatic equilibrium, there should be no gravity anomaly and hence no excess or lack of massabove the
compensation depth.  However, in practice, interpreting gravity measurements is a convoluted process.
As an example, take the mountains shown above which are in 100% isostatic compensation of the Airy
type.  The Bouguer anomaly across these mountains is negative, since below sea level there is a mass
deficit under the mountains, ie, the low density root is holding the overlying mountains up.  The Bouguer
anomaly reflects the fact that the overlying mountains have been removed from the correction, which
leaves only the mass deficit at depth unaccounted for, which causes the negative Bouguer anomaly.

The free air anomaly, on the other hand, will be slightly positive, since this anomaly only takes into account
the fact that we’re above sea level in our measurements and doesn’t take into account the distribution of
mass below us.  The slight positive reading comes from the fact that the overlying mountain is closer to us
and and our point of measurement than is the compensating low density material at depth, and since
graviational acceleration drops off as 1/distance2, the closer,  mountain attraction io stronger than the more
distant lack of attraction due to the mass deficit in the root, which results in a slight positive free air
anomaly.

The simplest way to determine whether a large-scale structure such as a mountain chain is in isostatic
equilibrium is to use the free air anomaly.  If a structure is totally compensated, away from the edges of the

structure the free air anomaly will be very small. Near the edges is difficult to discern.  If the structure is
only partially compensated, the or not a t all, then the free air anomaly will be strongly positive, up to
several hundred millgals, while the Bouguer anomaly will be about zero.  Free air anomalies are always
almost isostatic anomalies.  They do not tell you what type of compensation is ocurring (ie, Pratt versus
Airy), but if compensation of any mechanism is complete, then the free air anomaly will be nearly zero.

Gravity Profile Examples (below)
The examples below show several gravity anomaly profiles across isostatic and non-isostatically
compensated mountains.  In the example, (a), compensation is complete.  The free air anomaly is nearly
zero away from the  edges, but otherwise slightly positive, because the mass excess of the mountain is
compensated by the mass excess at depth, but the closer mass excess of the mountain produces a slightly
stronger positive gravity anomaly then the negative anomaly caused by the deficit at depth.  The Bouguer
anomaly, on the other hand, is strongly negative, since it accounts for the gravity anomaly produced by the
mountain but not the lack of gravity produced by the mass deficit at depth.

Skipping (b) for now, in (c), which is totally uncompensated, the Bouguer anomaly is zero since the there is
no root to cause the negative anomaly.  The  free air anomaly is extremely positive, since we’ve only
corrected for the altitude by assuming everything between sea level and our the altitude is air, when in fact
it is rock and has a strong gravity signal associated with it.

In (b), the free air correction is moderately positive, while the Bouguer anomaly is moderately negative.






