Induced Polarization Method

- Principles;
- Areas of application;
- Measurement;
- Equipment and layout;
- Interpretation;
- Case histories.
- Reading:

Reynolds, Chapter 9. Telford et al., Chapter 9.

Induced Potentials

- After current is switched off (or turned on), the voltage between potential electrodes takes 1s -1 min to decay (or build up)
 - The ground acts somewhat like a capacitor.
 - Overvoltage decay times and rise times are measured and are diagnostic of the nature of the subsurface.

Applications:

- Metallic deposits with low EM anomalies and high resistivity;
- Disseminated Cu, Pb-Zn ores, Au;
- Pyrite, chalcopyrite, magnetite, clay, graphite.

IP Techniques

- *Time domain* (pulse transient);
- Frequency domain (using harmonic signals):
 - Traditional variable-frequency IP (using two or more frequencies of < 10 Hz);
 - *Phase domain* (measure phase delays between current and voltage);
 - Spectral IP (measure phases and amplitudes at frequencies 10^{-3} to $4 \cdot 10^{3}$ Hz).
- Using conventional resistivity arrays

-

- Most commonly *double-dipole* configuration;
- Schlumberger arrays for broad reconnaissance surveys.

Origin of IP Macroscopic

- IP s sensitive to *dielectric* rater than conductivity characteristics.
- Disseminated (poorly conductive) ore body is polarized (develops *surface charges*) by the imposed current;

=/

- When the current is switched off, the charges cause transient current through the conductive overburden.
 - These currents flow *in the same direction* and cause the overvoltage effect.

Origin of IP Microscopic

Grain (and electrode) polarization:

• Electrolytic (membrane) polarization:

Time-domain IP

Measuring apparent chargeability (M)

- Apparent chargeability (M_a) increases with increasing duration of the pulses (~ 3-5 s);
- Graphite has M_a .=11.2 ms, magnetite 2.2 ms at 1 s integration.

Impedance

of the capacitor

decreases

with frequency: $Z=1/i\omega C$; hence the total resistance

decreases.

R

Variable-frequency IP

- Using the same array as in DC resistivity measurements but driving AC current at several frequencies.
- Measuring ρ_a (*frequency*):
 - ρ_a decreases with frequency;
 - This decrease is measured as the *Frequency Effect* (FE):

Frequency Effect =
$$\frac{\rho_a(f_0) - \rho_a(f_1)}{\rho_a(f_1)}$$
 [unitless or %].

FE can also be expressed as the *Metal Factor* (variation of apparent *conductivity*):

 $Metal Factor = 2 \times 10^{5} \quad \frac{\rho_{a}(f_{0}) - \rho_{a}(f_{1})}{\rho_{a}(f_{0})\rho_{a}(f_{1})} = 2 \times 10^{5} \quad (\sigma_{a}(f_{1}) - \sigma_{a}(f_{0}))$

[siemens/m].

Spectral (complex resistivity) IP

GEOL 335.3

Using AC current at *a range* of frequencies from 30 to 4000 Hz.

Measuring complex impedance:

$$Z(\omega) = \frac{U(\omega)}{I(\omega)} K.$$
 Geometric factor
of the array

The *Cole-Cole* model for complex resistivity:

Cole-Cole relaxation spectra

For varying frequencies, complex resistivity describes a semicircle in (ReZ, ImZ) plane:

The *critical frequency* at which the maximum phase shift is measured is indicative of τ :

$$F_{c} = \frac{1}{2 (1 - M)^{1/2c}}$$
Independent of resistivity

GEOL 335.3

Chargeability of various materials

Table 9.3. Chargeability of various materials.

Material	Chargeability (ms)
Ground water	0
Alluvium	1 - 4
Gravels	3-9
Precambrian volcanics	8-20
Precambrian gneisses	6-30
Schists	5 - 20
Sandstones	3-12
Argillites	3-10
Quartzites	5-12

Table 9.4. Metal factor of various rocks and minerals.

Material	Metal factor (mhos/cm)
Massive sulfides	10,000
Fracture-filling sulfides	1,000 - 10,000
Massive magnetite	3-3,000
Porphyry copper	30-1,500
Dissem. sulfides	100-1,000
Shale-sulfides	3-300
Clays	1-300
Sandstone - 1 - 2% sulfides	2 - 200
Finely dissem. sulfides	10-100
Tuffs	1-100
Graphitic sandstone	
and limestone	4-60
Gravels	0-200
Alluvium	0-200
Precambrian gneisses	10-100
Granites, monzonites, diorites	0-60
Various volcanics	0-80
Schists	10-60
Basic rocks (barren)	1-10
Granites (barren)	1
Groundwater	0

GEOL 335.3

Displays of IP data

- Profiles and maps of apparent chargeability (time-domain IP);
 - Pseudo-sections (combined with ρ_a)

GEOL 335.3

Lab Case History (Ogilvy and Kuzmina, 1972)

IP Case History

Identification of a contamination with cyanide complexes (slags from plating works; Cahyna et al., 1990);

Resistivity survey failed to detect th contamination;

IP chargeability identified both the known and unknown slag deposits.

