LEUCOCYTES
BENIGN DISORDERS

Dr Adel M Abuzenadah
LEUCOCYTES BENIGN DISORDERS

- **Quantitative**
 - Change in number

- **Terminology**
 - Cytosis / philia
 - Increase in number
 - Cytopenia
 - Decrease in number

- **Qualitative**
 - Morphologic changes
 - Functional changes
LEUCOCYTES BENIGN DISORDERS

Quantitative changes

Relative vs Absolute values

- Total white blood cell count
- Differential count
- Absolute count

- Differential gives the relative percentage of each WBC
- Absolute value gives the actual number of each WBC/mm3 of blood

 - Calculation: absolute count = Total WBC x percent
Regulation of cell production
- Regulatory mechanisms must operate in close controlled way

Haemopoietic growth factors

The control of cell death

Inhibitors of cell proliferation

Stromal cell factors (cell-cell and cell-matrix interaction)
Quantitative changes (LEUCOCYTOSIS)

- Leucocytes
 - Phagocytes
 - Granulocytes
 - Neutrophils
 - Eosinophils
 - Basophils
 - Mononuclear phagocytic cells
 - Monocytes
 - Macrophage and dendritic cells
 - Lymphocytes
 - B-cells
 - T-cells
Definition

Raised TWBC due to elevation of any of a single lineage.

- Note: elevation of the minor cell populations can occur without a rise in the total white cell count.

Normal reference range (adult 21 years)

- 4.5 -- 11.0 x 10⁹/L
LEUCOCYTES BENIGN DISORDERS

Quantitative changes (LEUCOPENIA)

- **Definition**

 TWBC lower than the reference range for the age is defined as leucopenia.

 - Leucopenia may affect one or more lineages and it is possible to be severely neutropenic or lymphopenic without a reduction in total white cell count.
Granulocytosis
Increase in the count of all or one of the granulocytic component
- Neutrophils
- Basophils
- Eosinophils

Agranulocytosis
Decrease in the count of all or one granulocytic component
WBC Histogram:

<table>
<thead>
<tr>
<th>WBC</th>
<th>%</th>
<th>#</th>
</tr>
</thead>
<tbody>
<tr>
<td>NE</td>
<td>52.6</td>
<td>3.6</td>
</tr>
<tr>
<td>LY</td>
<td>36.7</td>
<td>2.5</td>
</tr>
<tr>
<td>MO</td>
<td>7.8</td>
<td>0.5</td>
</tr>
<tr>
<td>EO</td>
<td>2.5</td>
<td>0.2</td>
</tr>
<tr>
<td>BA</td>
<td>0.4</td>
<td>0.0</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>RBC</td>
<td>5.29</td>
</tr>
<tr>
<td>HGB</td>
<td>16.2</td>
</tr>
<tr>
<td>HCT</td>
<td>47.0</td>
</tr>
<tr>
<td>MCV</td>
<td>88.8</td>
</tr>
<tr>
<td>MCH</td>
<td>30.7</td>
</tr>
<tr>
<td>MCHC</td>
<td>34.5</td>
</tr>
<tr>
<td>RDW</td>
<td>12.5</td>
</tr>
<tr>
<td>PLT</td>
<td>179</td>
</tr>
<tr>
<td>MPV</td>
<td>8.4</td>
</tr>
</tbody>
</table>
Neutrophils

- Count 2.5 - 7.5 x 10⁹/l
- Granular cytoplasm
- Transient stay in blood
- Major phagocytic role
- Bacterial killing
- 3-5 lobes of nucleus
LEUCOCYTES BENIGN DISORDERS
Quantitative changes (NEUTROPHILIA)

Definition

- Increase in the number of neutrophils and/or its precursors
- In adults count >7.5 x 10^9/L but the counts are age dependent
- Increase may result from alteration in the normal steady state of:
 - Production
 - Increased progenitor cell proliferation
 - Increased frequency of cell division of committed neutrophil precursors
 - Transit
 - Impaired transit to tissue
 - Migration
 - Destruction
LEUCOCYTES BENIGN DISORDERS

Quantitative changes (NEUTROPHILIA) contd.

- **Causes of Neutrophilia**
 - **Infection**
 - Bacterial
 - **Inflammatory conditions**
 - Autoimmune disorders
 - Gout
 - **Neoplasia**
 - **Metabolic conditions**
 - Uraemia
 - Acidosis
 - Haemorrhage
 - **Corticosteroids**
 - **Marrow infiltration/fibrosis**
 - **Myeloproliferative disorders**
LEUCOCYTES BENIGN DISORDERS
Quantitative changes (NEUTROPHILIA) contd.

- **Acute Neutrophilia**
 - Mobilized rapidly by stress, suggested by adrenaline stress test; due to reduced neutrophil adhesion
 - Bacterial infection
 - Stress
 - Exercise
 - Slower rise when cells are released from the bone marrow storage pool
 - Steroid
 - Infections (reactive changes; left shift, toxic granulation, high NAP score and Dohle bodies.

- Steroids also reduces the passage to the tissues
LEUCOCYTES BENIGN DISORDERS
Quantitative changes (NEUTROPHILIA) contd.

- **Chronic neutrophilia**
 - Long term corticosteroid therapy
 - Chronic inflammatory reactions
 - Infections or chronic blood loss
 - Infections
 - Less common organisms e.g. poliomyelitis

- **Leukemoid reactions**
 - Applied to chronic neutrophilia with marked leucocytosis (>20 x 10⁹/L)
 - The usual feature is the shift to the left of myeloid cells
 - Causes include
 - Infections
 - Marrow infiltration
 - Systemic disease (Acute liver failure)
Neutropenia is an absolute reduction in the number of circulating neutrophils

- Mild (1- 1.5 x 10^9/L)
- Moderate (0.5 – 1 x 10^9/L)
- Severe (<0.5 x 10^9/L)

- Symptoms are rare with the neutrophil count above 1 x 10^9/L
- Bacterial infections are the commonest
- Fungal, viral and parasitic infection are relatively uncommon
Causes of Neutropenia

- Racial
- Congenital
- Cyclical neutropenia
- Marrow aplasia
- Marrow infiltration
- Megaloblastic anemia
- Acute infections
 - Typhoid, Miliary TB, viral hepatitis
- Drugs
- Irradiation exposure
- Immune disorders
 - HIV
 - SLE
 - Felty’s syndrome
 - Neonatal isoimmune and autoimmune neutropenia
- Hypersplenism
LEUCOCYTES BENIGN DISORDERS
Quantitative changes (NEUTROPENIA) contd.

- **Management of Neutropenia**
 - Remove the cause if possible
 - Treat any infection aggressively
 - Role of
 - Growth factors
 - Splenectomy

- **Cyclical neutropenia**
 - Regular recurring episodes of severe neutropenia (<0.2 x 10^9/L) usually lasting for 3-6 days
 - Can be familial & inherited with maturation arrest
 - Three suggested mechanisms for cyclical neutropenia
 - Stem cell defect & altered response to growth factors
 - Defect in humoral or cellular stem cell control
 - Periodic accumulation of an inhibitor
Eosinophils

- Count 0.2 – 0.8 x 10⁹/l
- Bilobed nucleus
- Phagocytic activity is low
- Modulation of hypersensitivity and allergic reactions
LEUCOCYTES BENIGN DISORDERS
Quantitative changes (EOSINOPHILIA)

- Increase in the eosinophil count must prompt for further investigation ($>0.6 \times 10^9/L$)
- The causes of eosinophilia can be considered under following headings
 - Allergy
 - Atopic, drug sensitivity and pulmonary eosinophilia
 - Infection
 - Parasites, recovery from infections
 - Malignancy
 - Hodgkin’s disease, NHL and myeloproliferative disorders
 - Drugs
 - Skin disorders
 - Gastrointestinal disorders
 - Hypereosinophilic syndrome
Hypereosinophilic syndrome

Criteria of diagnosis

- Peripheral blood eosinophil >1.5 x 10⁹/L
- Persistence of counts more than 6 months
- End organ damage
- Absence of any obvious cause for eosinophilia

Organ most commonly involved

- Heart
- Lung
- Skin
- Neurological
Monocytes

- Count is 0.2-0.8 x 10⁹/l
- Functions
 - Antigen presentation
 - Cytokine production
 - Phagocytosis
LEUCOCYTES BENIGN DISORDERS
Quantitative changes (MONOCYTOSIS)

- Absolute monocyte count is age dependent
- Count rarely exceeds $>1.0 \times 10^9/L$
- Have no marrow reserves
- Useful harbinger of engraftment
- Causes of monocytosis can be grouped as
 - Infections
 - Chronic infection (TB, typhoid fever, infective endocarditis)
 - Recovery from acute infection
 - Malignant disease
 - MDS, AML, HD, NHL
 - Connective tissue disorders
 - Ulcerative colitis, Sarcoidosis, Crohn’s disease
 - Post splenectomy
Basophils

- Count 0.1 – 0.2 x 10^9/l
- Bilobed nucleus
- Nucleus is hided behind the granules
- Inflammatory response
- Basophilia is seen in Myeloproliferative disorders (CML)
LEUCOCYTES BENIGN DISORDERS
Quantitative changes (BASOPHILIA)

- Basophils are least common of the granulocytes
- Reference range for adult is 0 – 0.2 x 10^9/L
- Most commonly associated with hypersensitivity reactions to drugs or food
- Inflammatory conditions e.g. RA, ulcerative colitis are also sometime associated with basophilia
- Myeloproliferative disorders
- Chronic myeloid leukemia
Lymphocytes

- Count varies with age
 - 1.5 – 3.5 x10^9/l
- The subset cells are
 - B-cells
 - Antibody mediated immunity
 - T-cells
 - Cell mediated immunity
 - NK cells
LEUCOCYTES BENIGN DISORDERS
Quantitative changes (LYMPHOCYTOSIS)

- The blood contain only few percent of total body lymphocytes
- The most consistent variation is seen with age
- Alteration of lymphocyte counts can result from:
 - The redistribution of lymphocytes
 - Results in variation in count in serial measurements
 - Absolute increase of lymphocyte number
 - Loss of lymphocytes
 - Combination of these
LEUCOCYTES BENIGN DISORDERS

Quantitative changes (LYMPHOCYTOSIS)

- Non-malignant causes of lymphocytosis
 - Infections
 - Viral infections
 - Infectious mononucleosis
 - CMV
 - Rubella, hepatitis, adenoviruses, chicken pox, dengue
 - Bacterial infections
 - Pertussis
 - Healing TB, typhoid fever
 - Protozoal infections
 - Toxoplasmosis
 - Allergic drug reactions
 - Hyperthyroidism
 - Splenectomy
 - Serum sickness
Infectious Mononucleosis

- Epstein-Barr virus
- Saliva from infected person is the main contagion
- Virus infect epithelial cells and B cells
- Autocrine growth stimulation
- Infection in children under the age of 10 does not cause illness and result in life long immunity

Clinical features

- Fever, malaise, fatigue, sore throat, diagnostic red spots at the junction of soft and hard palate, splenomegaly
- Blood picture shows leucocytosis (10 – 20 x 10⁹/L) due to absolute increase in the number of lymphocytes
- Diagnosis is by serological tests
- There is no specific treatment
Nonmalignant Leukocyte Disorders

- **Leukemoid reaction** – this is an extreme neutrophilia with a WBC count $> 30 \times 10^9/L$
 - Many bands, metamyelocytes, and myelocytes are seen
 - Occasional promyelocytes and myeloblasts may be seen.
 - This condition resembles a chronic myelocytic leukemia (CML), but can be differentiated from CML based on the fact that in leukemoid reactions:
 - There is no Philadelphia chromosome
 - The condition is transient
 - There is an increased leukocyte alkaline phosphatase score (more on this later)
 - Leukemoid reactions may be seen in tuberculosis, chronic infections, malignant tumors, etc.
Leukemoid reaction
Leukemoid reaction
Nonmalignant Leukocyte Disorders

- Morphologic and functional abnormalities of neutrophils
 - Acquired, morphologic – these are reactive, transient changes accompanying infectious states. They include
 - Toxic granulation
 - Dohle bodies
 - Cytoplasmic vacuoles
Dohle bodies
Morphologic neutrophil changes

Vacuolated cell
Morphologic neutrophil changes

Toxic granulation
Nonmalignant Leukocyte Disorders

- Inherited functional and/or morphological abnormalities
 - Pelger-Huet Anomaly – this is a benign, inherited, autosomal dominant abnormality in which the neutrophil nucleus does not segment beyond the bilobular stage (“Prince-nez cells”).
 - The cells may sometimes resemble bands, but the chromatin is more condensed (mature).
 - The cells function normally.
 - Acquired or pseudo Pelger-Huet Anomaly is seen in myeloproliferative and myelodysplastic states
Pelger-Huet Anomaly
Pseudo Pelger-Huet Anomaly

Note nuclear maturity
Nonmalignant Leukocyte Disorders

- Alder-Reilly Anomaly – in this disorder all leukocytes contain large, purplish granules (due to partially degraded protein-carbohydrates) in the cytoplasm, but the cells function normally.
 - This is seen in Hurler’s and Hunter’s syndromes in which there is an incomplete breakdown of mucopolysaccharides.
Hurler’s Syndrome

Note the granules
Nonmalignant Leukocyte Disorders

- Chediak-Higashi Anomaly –
 - This is a rare autosomal recessive disorder in which abnormal lysosomes are formed by the fusion of primary granules. These are seen as grayish-green inclusions.
 - The cells are ineffective in killing microorganisms and affected individuals often die early in life from pyogenic infections.
Chediak-Higashi Anomaly

Note abnormal lysosomes
Nonmalignant Leukocyte Disorders

- May-Hegglin Anomaly
 - This is a rare, autosomal dominant disorder in which the leukocytes contain large basophilic inclusions containing RNA that look similar to Dohle bodies.
 - It can be differentiated from an infection because toxic granulation is not seen.
 - The patients also have giant platelets that have a shortened survival time. Because of this, patients may have bleeding problems, but they usually have no other clinical symptoms.
May-Hegglin Anomaly

Basophilic inclusions

large platelet
Nonmalignant Leukocyte Disorders

- **Chronic granulomatous disease**
 - This is a lethal, sex-linked disorder affecting the function of the neutrophil.
 - The neutrophil can function in phagocytosis, but it cannot kill microorganisms because the cells have a defect in the respiratory burst oxidase system.
 - Affected individuals have chronic infections with organisms that do not normally cause infections in normal individuals.

- **Myeloperoxidase deficiency**
 - This is a benign, autosomal recessive disorder characterized by a lack of myeloperoxidase in the neutrophils.
Nonmalignant Leukocyte Disorders

- Affected individuals may have occasional problems with *Candida* infections, but usually they have no problems with infections because they have other mechanisms to kill microorganisms.

- **Leukocyte adhesion deficiency**
 - This is a rare, autosomal recessive disorder characterized by the absence of leukocyte cell surface adhesion proteins.
 - Because of the lack of the adhesion molecules, the leukocytes have functional defects in:
 - Chemotaxis
 - Phagocytosis
 - Respiratory burst activation
 - Degranulation
 - Affected individuals have frequent bacterial and fungal infections and mortality in childhood is high.
Inherited abnormalities of neutrophils are also seen in monocytes because they originate from a common stem cell:

- **Chronic granulomatous disease** (defective respiratory burst)
- **Chediak Higashi** (abnormal lysosomes caused by fusion of primary granules)
- **Alder Reilly Anomaly** (large purple-blue granules)