
Genetics of Haemophilia Dr. Adel Abuzenadah Faculty of Applied Medical Sciences Centre of Excellence in Genomic Medicine Research King Abdulaziz University

Haemophilia Inheritance – X Linked Recessive

- Haemophilia A
- *F8* gene Xq28

- Haemophilia B
- *F9* gene Xq27

Haemophilia Severity

Haemophilia A <50% normal activity FVIII:C

• Haemophilia B <50% normal activity FIX:C

Severe <1%
Moderate 1-5%
Mild >5%

40% of patients10% of patients50% of patients

Haemophilia Prevalence

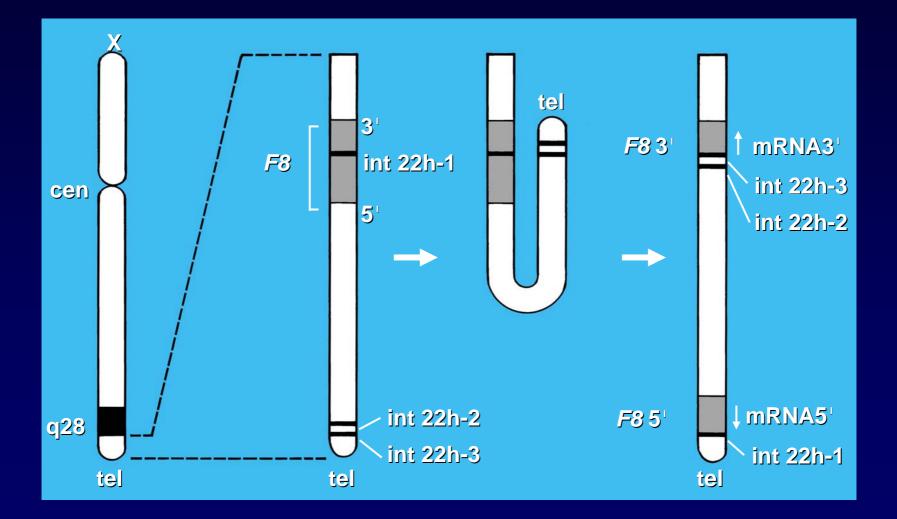
- X-chromosome linked inherited bleeding disorder
- 2 varieties
 - haemophilia A; 1 in 10,000 population
 - coagulation factor VIII deficiency

haemophilia B; 1 in 50,000 population
coagulation factor IX deficiency

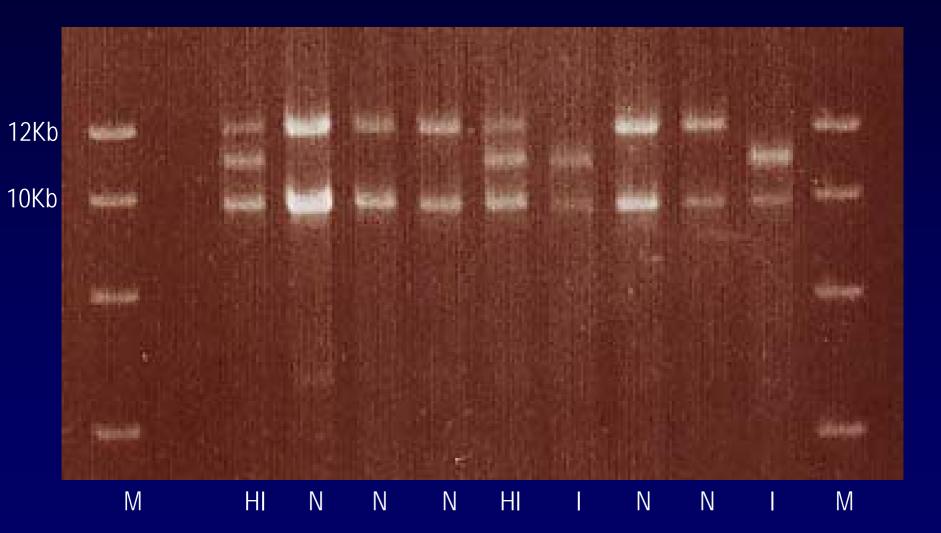
Mutations Responsible for Haemophilia A and B

Factor VIII Gene and Protein

F8 Gene

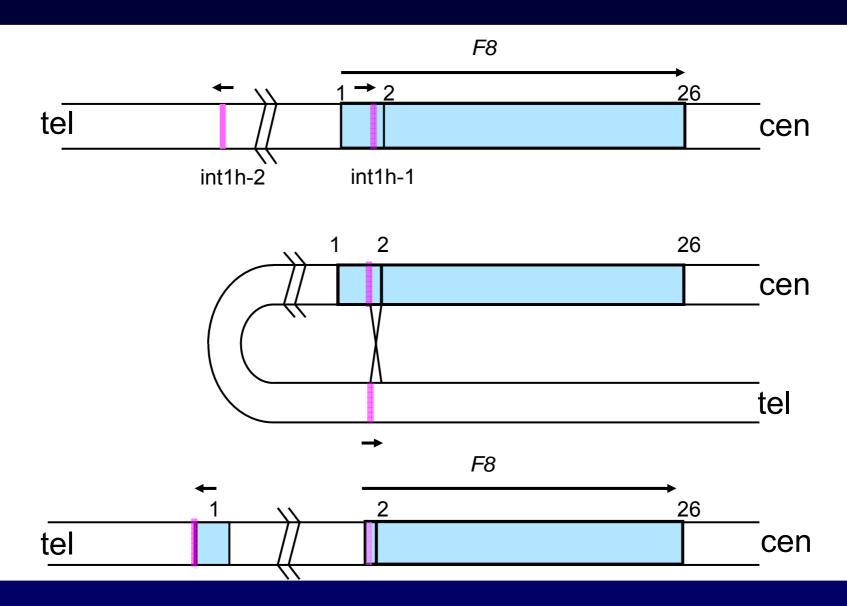

0	20	40	60	80	100	120	140	160	180 kb
	•		•			•		•	•
1	234	5 6	789 10 11	12 13	14	1518 1922		23 25	26
							_		

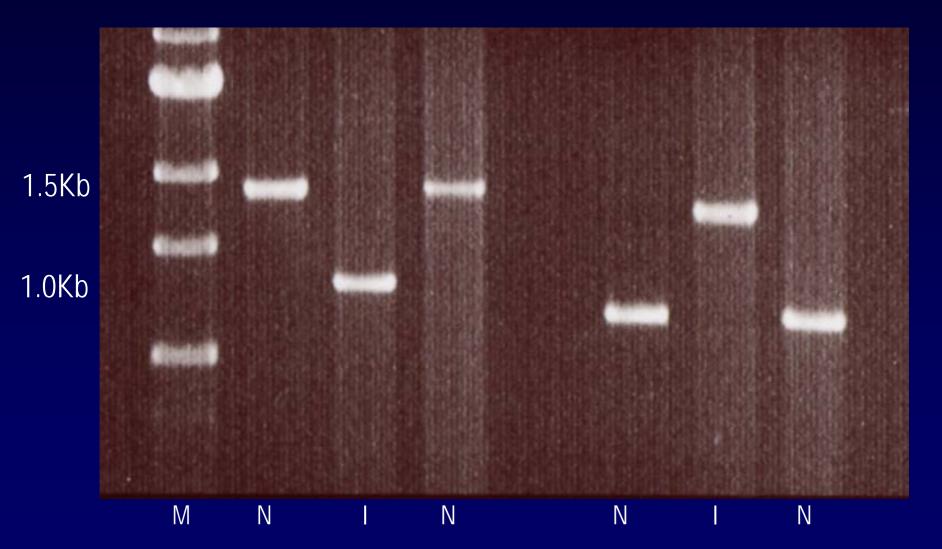
FVIII Protein



A1a1A2a2Ba3A3C1C2Heavy chainConnecting regionLight chain

F8 Intron 22 Inversion


F8 Intron 22 Inversion Analysis


F8 Intron 22 Inversion

- Results from homologous intrachromosomal recombination
- Inversion mutation occurs *de novo* once per 10,000 male meioses
- Every ejaculate contains at least one sperm with a *F8* intron 22 inversion mutation
- Responsible for 45% of severe haemophilia A

F8 intron 1 inversion

F8 Intron 1 Inversion Analysis

F8 Intron 1 Inversion

- Similar to intron 22 inversion
- 900 bp region 5' to F8 gene crosses over with homologous region in intron 1
- Results in *F8* gene lacking a promoter and first exon
- Responsible for approx 2% of severe haemophilia A

Intrachromosomal inversions cause 50% of cases of severe haemophilia A

Examples of Point Mutation

-Cys Arg Lys Lys Thr Gln-Normal -TGC CGA AAA AAA ACG CAG --Tyr Arg Lys Lys Thr Gln--TAC CGA AAA AAA ACG CAG--Val Stop -GTC TGA AAA AAA ACG CAG-Arg Lys Lys Arg Met--Val -GTC CGA AAA AAA CGC AGT-

sequence Missense

Nonsense

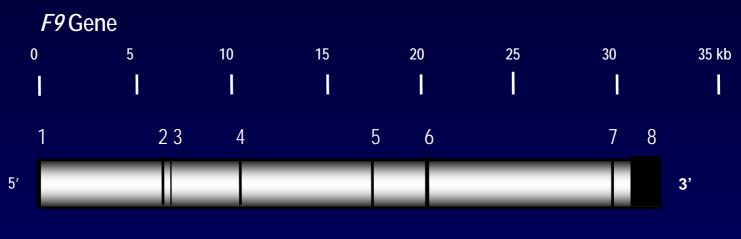
Frameshift $(eg A_8 > A_7)$

Other Mutation Types

Deletion of part or all of gene (200bp to >200kb)

Insertion into gene (repetitive sequence)

Splicing error affecting production of mRNA


Ways to Eliminate FVIII Activity (severe disease)

- Intron 1 or 22 inversion
- Delete part of gene
- Insert extra nucleotides
- Nonsense mutation
- Splice site defect
- Missense mutation at strategic amino acid

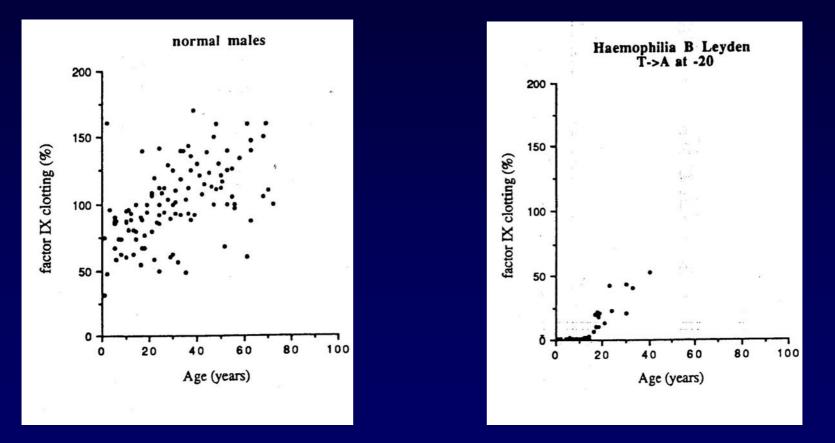
Ways to Reduce FVIII Production (moderate/mild disease)

- Missense mutation, less important amino acid
- Splice site defect
- Most families have a "private" mutation
- Mutation not identified in ~2% of patients

Factor IX Gene and Protein

FIX Protein

F9 Mutations


Haemophilia B Leiden

Most haemophilia is lifelong disorder of same severity

 Small proportion of haemophilia B patients have FIX levels which increase at puberty

• "Haemophilia B Leiden"

Factor IX Levels in Normal Males and in Haemophilia B Leiden

Haemophilia B Leiden results from specific F9 promoter mutations

Ways to Eliminate FIX Activity (severe disease)

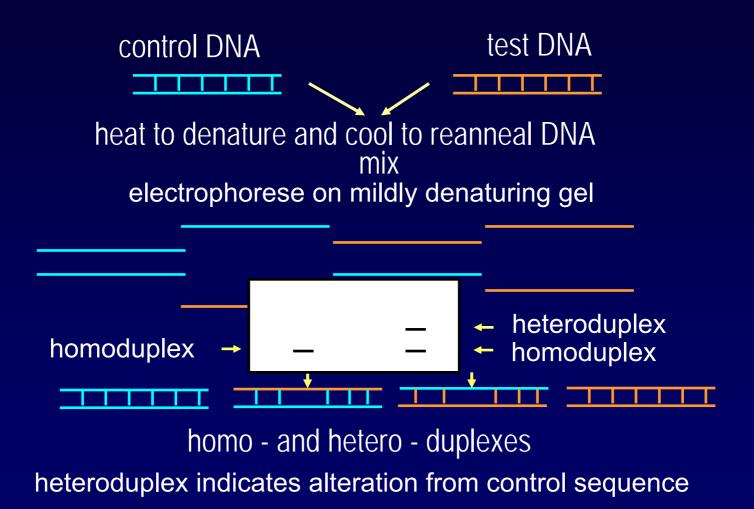
- Delete part of gene
- Insert extra nucleotides
- Nonsense mutation
- Splice site defect
- Missense mutation at strategic amino acid
- Promoter mutation

Ways to Reduce FIX Production (moderate/mild disease)

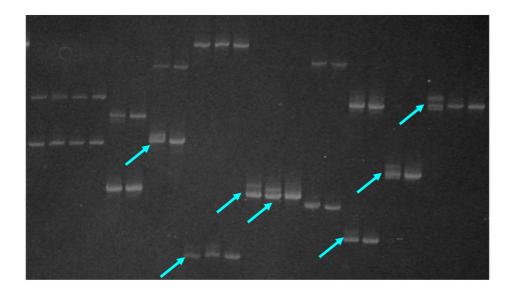
- Missense mutation, less important amino acid
- Splice site defect
- Promoter mutation
- Most families have a "private" mutation
- Mutations detected in 99% of patients

Genetic Analysis Options in Haemophilia

 Seek mutation in affected male, then use presence/absence of mutation to determine female carrier status and enable PND

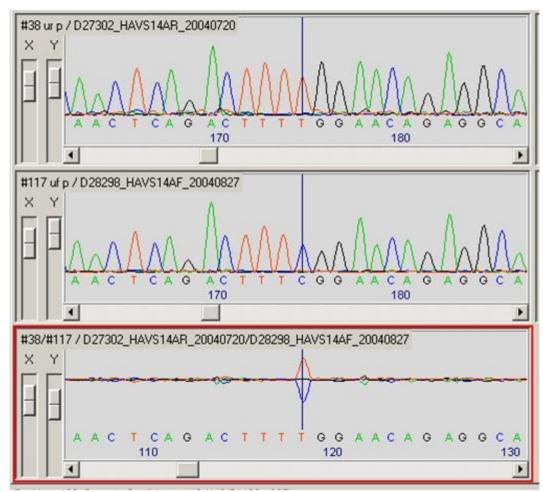

2. Use linkage analysis to track affected allele around the family, without knowledge of the causative mutation

F8 or F9 Gene Mutation Screen


- Extract DNA from blood (white cells)
- PCR amplify exons & promoter

 30 PCR amplicons for *F8* (26 exons)
 10 PCR amplicons for *F9* (8 exons)
- Use mutation screening technique (CSGE, DHPLC, SSCP etc) or DNA sequence each amplicon to identify mutation
- Polymorphisms (neutral variation) also seen

DNA Heteroduplex Formation



Conformation Sensitive Gel Electrophoresis

CSGE analysis of *F8* gene amplicons identifies several sequence alterations in heteroduplexed DNA

DNA Sequence Analysis

DNA sequence comparison of two patients to identify a sequence alteration using Staden sequence analysis software

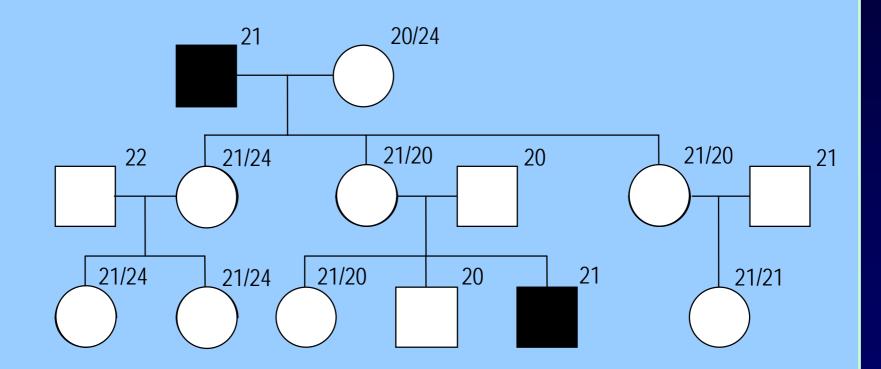
Mutation Analysis

- Sequence affected male's DNA
- Identify amplicon (1 of 30 for *F8*) with altered sequence
- Use reference (*F8*) sequence to interpret result of nucleotide change (eg missense mutation)
- Make judgement as to whether it is causative mutation in that patient (using mutation database, amino acid conservation etc)
- Seek mutation in ? carrier females to determine carrier status

The Haemophilia A Mutation, Structure, Test, Resource Site.

http://europium.csc.mrc.ac.uk

Condensed Table of FVIII Point Mutations: - Microsoft Internet Explorer									_ 8 ×
<u>File Edit View</u>									
			Q CENSOL E				Г оіт	• Di	iscuss »
Exon No.	Codon No.	. Original-muta	ated code	on Conseque	ence	FVIII:C			• @Go
Exon 18	1966	CGA C	AA (4)	Arg Gln		5-21	5	0	
Exon 18	1966	CGA C	CA (1)	Arg Pro)	3		?	М
Exon 19	1981	GGT G	[,] CT (1)	Gly Ala		<1		?	દ
Exon 19	1985	ACA AC	GA (1)	Thr Arg	,	?		?	
Exon 19	1987	GAA T/	AA (1)	Glu Stop	C	<1		?	દ
Exon 19	1988	ATG A	TA (1)	Met lle		14	3	1	
Exon 19	1997	CGG TG	3G (22)	Arg Trp	,	<1-5	4	4	Severe/
Exon 19	1997	CGG C	CG (2)	Arg Pro)	<1		?	Ę
Exon 19	1999	GAA G	GA (2)	Glu Gly	1	1		?	Ę
Exon 19	2003	GGC G	AC (1)	Gly Asp)	<1	2	0	Ę
Exon 19	2009	GGG A	.GG (2)	Gly Arg		11-14		?	Mild
Exon 19	2011	AGC A	AC (1)	Gly Asn	1	26	9	9	
Exon 19	2016	GTG G	CG (5)	Val Ala		9-14		?	Mod
Exon 19	2017	TAC TO	GC (1)	Tyr Cys	\$	3	Ę	5	М
Exon 19	2019	AAT AG	GT (3)	Asn Ser	r	5-20	5-	13	Mod
Exon 20	2021	TGT TO	GA (1)	Cys Sto	р	<2		?	٤
Exon 20	2021	TGT T	<u>AT (1)</u>	Cys Tyr	r 🗌	16		?	
Exon 20	2026	GGA G	AA (1)	Gly Glu	I	8		?	
Exon 20	2026	GGA G	TA (1)	Gly Val		<1		?	٤.
									<u>▶</u>


FIX Home Page

http://www.kcl.ac.uk/ip/petergreen/haemBdatabase.html

FIX:C FIX:Ag Nt No. Nt chg CpG? Consequence

						-		
Münster 12	5		30970	C→G	Ν	283, S→R	Eigel & Horst	1937
GER 9589	6		30970	C→G	N	283, S→R	Wulff ,Herrmann et al	2348
France HB228	<1		30970	C→G	N	283, S→R	double with 291 A→P (nucleotide 30992 Gee6≱ens et al	2601
HB270			30972	A→G	N	284, Y→C	Double (see 31,328) Sommer et al	1048
HB 270	<5		30972	A⊸G	N	284 Y→C	Ketterling, R, 1999	2217
HB816, Fr	<1	2	30973	C→A	N	284, Y→Stop	Tartary et al (1993)	1049
HB203	1	<1	30973	С→А	N	284, Y→Stop	Ketterling et al (1993)	1050
Besancon 7	1		30973	C→A	N	284, Y→Stop	Goossens et al	1984
HB006	14		30980	С→А	N	287, P→T	Vidal et al (2000)	2563
GER 2234A			30981	C→A	N	287, P→H	Wulff et al (1995)	735
es82	3	3	30981	С→А	N	287, P→H	Montejo et al (1999)	1857
Unnamed	<1	<1	30981	C→T	N	287, P→L	Chen et al (1991a)	251
GER 11606			30981	C→T	N	287, P→L	Wulff ,Herrmann et al	2855
9313	6	2	30984	T→C	İN	288, I→T	Thompson (unpublished)	2750
HB109	<1	<1	30985	T→G	N	288, I→M	Bottema et al (1991a)	519
GER 8832			30986	T→C	Ν	289, C→R	Wulff & Herrmann (1999)	1936
PA 648	<1		30987	G→A	N	289, C→Y	Tagariello	2590
LY83	<1		30987	G→A	N	289, C→Y	Negrier et Vinciquerra	3064
Belem 4	4		30987	G→C	N	289, C→S	Pestana et al	1488
UK 58	2		30987	G→T	N	289, C→F	Saad et al (1994)	736
HB162			30987	G→T	N	289, C→F	Female Gostout et al (1993)	1051
Unnamed	<1		30987	G→T	N	289, C→F	Driscoll et al (1996)	1487
Unnamed	<1		30987	G→T	N	289, C→F	Driscoll et al (1996)	1646
Toulouse 4	<1		30987	G→T	N	289, C→F	Goossens et al	2637
GER 11623 (Ru)			30989	AT→CA	Ν	290, I→H	Wulff ,Herrmann et al	2856
UK 13	10		30992	G→A	Ν	291, A→T	Montandon et al (1989)	253
UK 33	7	19	30992	G→A	N	291, A→T	Green et al (1992a)	254
UK 41	9	11	30992	G→A	N	291, A→T	Green et al (1992a)	255
UK 71	7	10	30992	G→A	N	291, A→T	Saad et al (1994)	520
UK 239	10		30992	G→A	N	291, A→T	Saad et al (1994)	737
UK 249	6		30992	G→A	N	291, A→T	Saad et al (1994)	1052
UK 416			30992	G→A	N	291, A→T	Rowley et al	1489
HB 689	<1		30992	G→A	N	291, A→T	Li, X, 2000	2219
HB 690	1		30992	G→A	N	291, A→T	Li, X, 2000	2220
Oxford h2	2	3	30992	G→C	N	291, A→P	Winship & Dragon (1991)	252
France HB228	<1	_	30992	G→C	N	291, A→P	double with 283 S→R (nucleotide 30970 GeeGens et al	2601

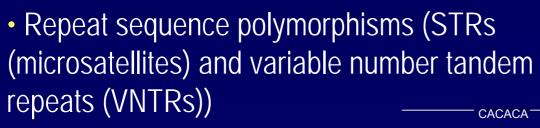
Linkage Analysis in a Haemophilia A Family

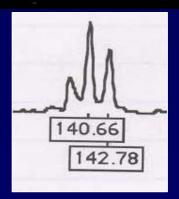
F8 intron 13 (CA_n) repeat; 16-25 repeats

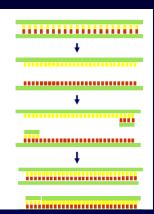
Linkage Analysis

• Technically simple

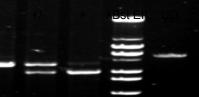
 Multiple members, including an affected member from the same family required

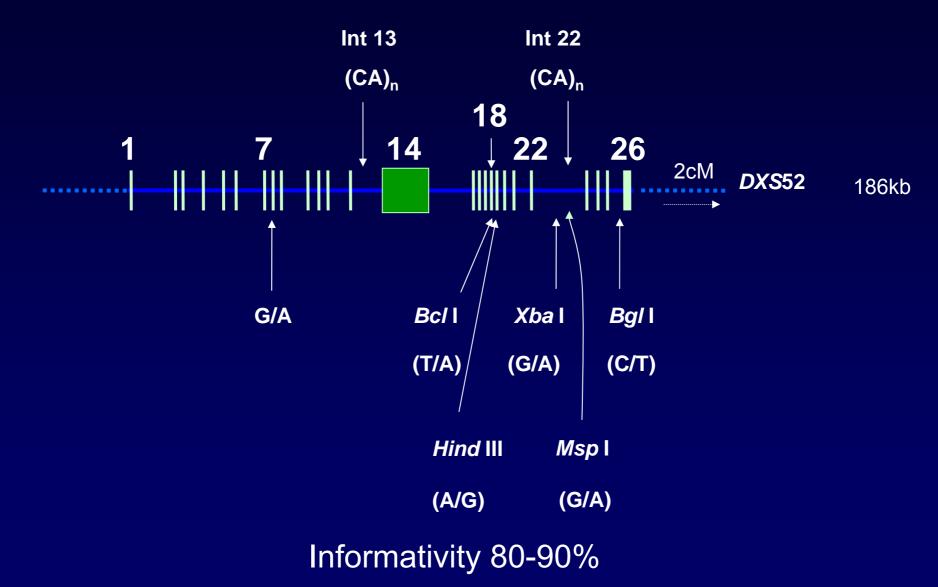

- Dependant on heterozygosity of key female relative(s)
- Ethnic variation in informativity


 In families with no prior haemophilia history, can only be used to exclude females as carriers

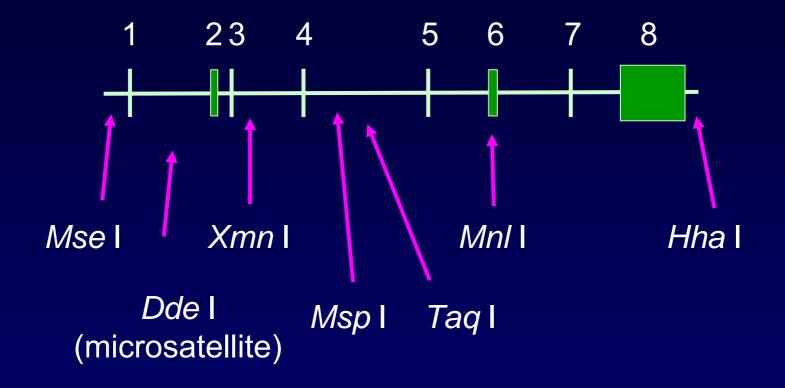

Approach for Linkage Analysis

• PCR


 Single nucleotide polymorphism recognised by restriction enzyme digestion (restriction fragment length polymorphism (RFLP))



Xbal

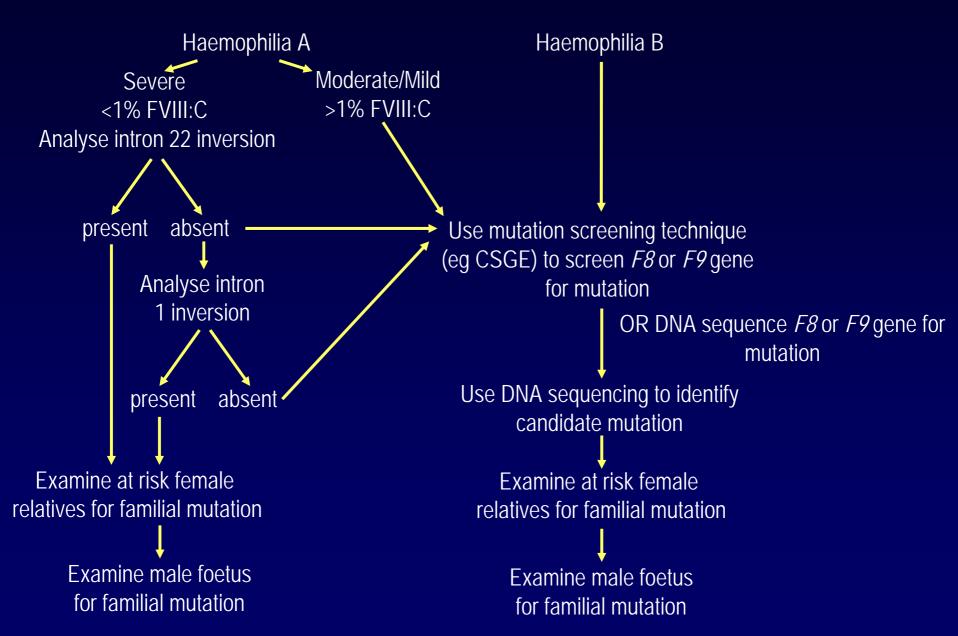


Intron13 (CA)n

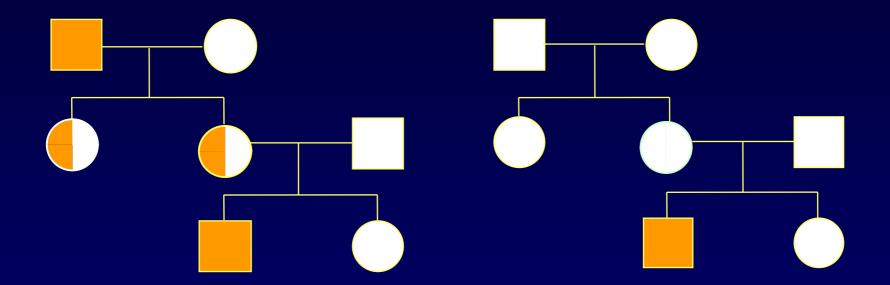
Commonly Used Polymorphic Markers in the F8 Gene

Commonly Used Polymorphic Markers in the F9 Gene

Combined informativity 80-90%


Genetic Tests for Haemophilia

- F8 intron 22 inversion
- F8 intron 1 inversion
- F8 screen in affected male
- F9 screen in affected male
- Confirm / exclude mutation in ? carrier female (amplify single exon only)
- Linkage analysis
- PND


Prenatal Diagnosis (PND)

- 10-13 weeks gestation
- CVS biopsy
 - Karyotype
 - Check no chromosomal abnormalities
 - Determine sex
- If male, seek familial mutation. If female, report sex only
- Terminate if affected????

Haemophilia Genetic Analysis Summary

New Mutations in Haemophilia

Family history of haemophilia ~ 60% families

Sporadic haemophilia ~ 40% families

Females with Haemophilia

- Some female haemophilia carriers experience bleeding problems
- Early in embryogenesis, one X chromososme is inactivated in all female cells; "Lyonisation"
- Process is random
- May result in unequal inactivation of X chromosomes
 - Carriers with haemophilia
 - Carriers with normal FVIII/IX levels

Haemophilia Web Resources

- Haemophilia A web page "HAMSTeRS" <u>http://europium.csc.mrc.ac.uk/WebPages/Main/main.htm</u>
- Haemophilia B web page
 <u>http://www.kcl.ac.uk/ip/petergreen/haemBdatabase.html</u>
- Best Practice guidelines
 <u>http://www.cmgs.org/BPG/Guidelines/2004/HaemophiliaA.htm</u>

http://www.cmgs.org/BPG/Guidelines/2004/HaemophiliaB.htm

• About haemophilia

http://www.haemophilia.org.uk/

http://www.zlbbehring.co.uk/zb/n26942/PFFAQs.htm

