Chapter 3 Mass Relationships in Chemical Reactions

Student:

1. An atom of bromine has a mass about four times greater than that of an atom of neon. Which choice makes the correct comparison of the relative numbers of bromine and neon atoms in $1,000 \mathrm{~g}$ of each element?
A. The number of bromine and neon atoms is the same.
B. There are one thousand times as many bromine atoms as neon atoms.
C. There are one thousand times as many neon atoms as bromine atoms.
D. There are four times as many neon atoms as bromine atoms.
E. There are four times as many bromine atoms as neon atoms.
2. An atom of bromine has a mass about four times greater than that of an atom of neon. How many grams of neon will contain the same number of atoms as $1,000 \mathrm{~g}$ of bromine?
A. 4 g Ne
B. 250 g Ne
C. 400 g Ne
D. $1,000 \mathrm{~g} \mathrm{Ne}$
E. $\quad 4,000 \mathrm{~g} \mathrm{Ne}$
3. What is the average mass, in grams, of one atom of iron?
A. $\quad 6.02 \times 10^{23} \mathrm{~g}$
B. $1.66 \times 10^{-24} \mathrm{~g}$
C. $9.28 \times 10^{-23} \mathrm{~g}$
D. 55.85 g
E. $\quad 55.85 \times 10^{-23} \mathrm{~g}$
4. What is the mass, in grams, of one arsenic atom?
A. $5.48 \times 10^{-23} \mathrm{~g}$
B. $\quad 33.0 \mathrm{~g}$
C. $\quad 74.9 \mathrm{~g}$
D. $1.24 \times 10^{-22} \mathrm{~g}$
E. $\quad 8.04 \times 10^{21} \mathrm{~g}$
5. What is the mass, in grams, of one copper atom?
A. $1.055 \times 10^{-22} \mathrm{~g}$
B. 63.55 g
C. 1 amu
D. $1.66 \times 10^{-24} \mathrm{~g}$
E. $\quad 9.476 \times 10^{21} \mathrm{~g}$
6. The mass of 1.21×10^{20} atoms of sulfur is
A. $3.88 \times 10^{21} \mathrm{~g}$.
B. $\quad 2.00 \mathrm{mg}$.
C. 32.06 g .
D. $\quad 6.44 \mathrm{mg}$.
E. $\quad 2.00 \times 10^{-4} \mathrm{~g}$.
7. The mass of 1.63×10^{21} silicon atoms is
A. $\quad 2.71 \times 10^{-23} \mathrm{~g}$.
B. 4.58×10^{22} g.
C. 28.08 g .
D. $1.04 \times 10^{4} \mathrm{~g}$.
E. $\quad 7.60 \times 10^{-2} \mathrm{~g}$.
8. What is the mass of 7.80×10^{18} carbon atoms?
A. $1.30 \times 10^{-5} \mathrm{~g}$
B. $\quad 6.43 \times 10^{3} \mathrm{~g}$
C. $\quad 7.80 \times 10^{18} \mathrm{~g}$
D. $1.56 \times 10^{-4} \mathrm{~g}$
E. 12.01 g
9. If 0.274 moles of a substance weighs 62.5 g , what is the molar mass of the substance, in units of $\mathrm{g} / \mathrm{mol}$?
A. $2.28 \times 10^{2} \mathrm{~g} / \mathrm{mol}$
B. $\quad 1.71 \times 10^{1} \mathrm{~g} / \mathrm{mol}$
C. $\quad 4.38 \times 10^{-3} \mathrm{~g} / \mathrm{mol}$
D. $2.17 \times 10^{2} \mathrm{~g} / \mathrm{mol}$
E. none of these
10. One mole of iron
A. is heavier than one mole of lead (Pb).
B. is 77.0 g of iron.
C. is 26.0 g of iron.
D. weighs the same as one mole of lead.
E. is none of these.
11. Which of these quantities does not represent 1.00 mol of the indicated substance?
A. $\quad 6.02 \times 10^{23} \mathrm{C}$ atoms
B. 26.0 g Fe
C. $\quad 12.01 \mathrm{~g} \mathrm{C}$
D. 65.4 g Zn
E. $\quad 6.02 \times 10^{23} \mathrm{Fe}$ atoms
12. One nanogram doesn't seem like a very large number. How many magnesium atoms are there in 1.00 ng of magnesium?
A. 4.11×10^{-11} atoms
B. 2.48×10^{13} atoms
C. $\quad 6.83 \times 10^{-35}$ atoms
D. 6.02×10^{14} atoms
E. 1.46×10^{34} atoms
13. How many silicon atoms are there in 1.00 g of silicon?
A. 1 atom
B. 0.0356 atoms
C. 2.57×10^{23} atoms
D. 2.14×10^{22} atoms
E. 1.75×10^{25} atoms
14. How many atoms are in 5.54 g of F_{2} ?
A. 6.02×10^{23} atoms
B. 0.146 atoms
C. 0.292 atoms
D. 8.78×10^{22} atoms
E. $\quad 1.76 \times 10^{23}$ atoms
15. How many atoms are in 4.39 g of CO_{2} ?
A. $\quad 1.80 \times 10^{23}$ atoms
B. $\quad 6.01 \times 10^{22}$ atoms
C. 1.16×10^{26} atoms
D. 6.04×10^{24} atoms
E. $\quad 1.81 \times 10^{25}$ atoms
16. How many atoms are in 0.0728 g of PCl_{3} ?
A. 1.28×10^{21} atoms
B. 4.38×10^{22} atoms
C. 4.39×10^{21} atoms
D. 3.19×10^{20} atoms
E. 6.02×10^{24} atoms
17. Determine the number of moles of aluminum in 96.7 g of Al .
A. $\quad 0.279 \mathrm{~mol}$
B. $\quad 3.58 \mathrm{~mol}$
C. $\quad 7.43 \mathrm{~mol}$
D. $\quad 4.21 \mathrm{~mol}$
E. $\quad 6.02 \times 10^{23} \mathrm{~mol}$
18. Calculate the number of moles of xenon in 12.0 g of xenon.
A. $\quad 1.00 \mathrm{~mol}$
B. 0.0457 mol
C. $\quad 0.183 \mathrm{~mol}$
D. $7.62 \times 10^{-3} \mathrm{~mol}$
E. $\quad 0.0914 \mathrm{~mol}$
19. How many moles of CF_{4} are there in 171 g of CF_{4} ?
A. $\quad 0.51 \mathrm{~mol}$
B. $\quad 1.94 \mathrm{~mol}$
C. $\quad 4.07 \mathrm{~mol}$
D. 88.0 mol
E. $\quad 171 \mathrm{~mol}$
20. How many moles of NH_{3} are there in 77.5 g of NH_{3} ?
A. $\quad 0.220 \mathrm{~mol}$
B. $\quad 4.55 \mathrm{~mol}$
C. $\quad 14.0 \mathrm{~mol}$
D. $\quad 1.31 \times 10^{3} \mathrm{~mol}$
E. none of these
21. Calculate the number of moles of cesium in 50.0 g of cesium.
A. $\quad 0.376 \mathrm{~mol}$
B. $\quad 0.357 \mathrm{~mol}$
C. $\quad 2.66 \mathrm{~mol}$
D. $\quad 2.80 \mathrm{~mol}$
E. $\quad 0.0200 \mathrm{~mol}$
22. Which of the following samples contains the greatest number of atoms?
A. 100 g of Pb
B. 2.0 mole of Ar
C. 0.1 mole of Fe
D. 5 g of He
E. 20 million O_{2} molecules
23. Calculate the molecular mass of potassium permanganate, KMnO_{4}.
A. 52 amu
B. 70 amu
C. 110 amu
D. 158 amu
E. 176 amu
24. Calculate the molecular mass of menthol, $\mathrm{C}_{10} \mathrm{H}_{20} \mathrm{O}$.
A. 156 amu
B. 140 amu
C. 29 amu
D. 146 amu
E. 136 amu
25. What is the molar mass of acetaminophen, $\mathrm{C}_{8} \mathrm{H}_{9} \mathrm{NO}_{2}$?
A. $\quad 43 \mathrm{~g} / \mathrm{mol}$
B. $76 \mathrm{~g} / \mathrm{mol}$
C. $\quad 151 \mathrm{~g} / \mathrm{mol}$
D. $162 \mathrm{~g} / \mathrm{mol}$
E. $125 \mathrm{~g} / \mathrm{mol}$
26. What is the molar mass of nicotine, $\mathrm{C}_{10} \mathrm{H}_{14} \mathrm{~N}_{2}$?
A. $134 \mathrm{~g} / \mathrm{mol}$
B. $\quad 148 \mathrm{~g} / \mathrm{mol}$
C. $\quad 158 \mathrm{~g} / \mathrm{mol}$
D. $210 \mathrm{~g} / \mathrm{mol}$
E. $\quad 162 \mathrm{~g} / \mathrm{mol}$
27. What is the mass of 0.0250 mol of $\mathrm{P}_{2} \mathrm{O}_{5}$?
A. 35.5 g
B. 5676 g
C. $\quad 0.0250 \mathrm{~g}$
D. $1.51 \times 10^{22} \mathrm{~g}$
E. $\quad 3.55 \mathrm{~g}$
28. Calculate the mass of 3.00 moles of $\mathrm{CF}_{2} \mathrm{Cl}_{2}$.
A. 3.00 g
B. 174 g
C. 363 g
D. $1.81 \times 10^{24} \mathrm{~g}$
E. 40.3 g
29. The molecular formula of aspirin is $\mathrm{C}_{9} \mathrm{H}_{8} \mathrm{O}_{4}$. How many aspirin molecules are present in one 500 -milligram tablet?
A. 2.77 molecules
B. 2.77×10^{-3} molecules
C. 1.67×10^{24} molecules
D. 1.67×10^{21} molecules
E. none of these is correct.
30. Formaldehyde has the formula $\mathrm{CH}_{2} \mathrm{O}$. How many molecules are there in 0.11 g of formaldehyde?
A. $\quad 6.1 \times 10^{-27}$
B. 3.7×10^{-3}
C. 4
D. 2.2×10^{21}
E. $\quad 6.6 \times 10^{22}$
31. How many molecules are there in 8.0 g of ozone, O_{3} ?
A. 3 molecules
B. 3.6×10^{24} molecules
C. 1.0×10^{23} molecules
D. 3.0×10^{23} molecules
E. $\quad 6.0 \times 10^{23}$ molecules
32. How many moles of HCl are represented by $1.0 \times 10^{19} \mathrm{HCl}$ molecules?
A. $\quad 1.7 \times 10^{-5} \mathrm{~mol}$
B. $1.5 \times 10^{-3} \mathrm{~mol}$
C. $1.0 \times 10^{19} \mathrm{~mol}$
D. $\quad 36.5 \mathrm{~mol}$
E. $\quad 6.02 \times 10^{4} \mathrm{~mol}$
33. How many sodium atoms are there in 6.0 g of $\mathrm{Na}_{3} \mathrm{~N}$?
A. 3.6×10^{24} atoms
B. 4.6×10^{22} atoms
C. 1.3×10^{23} atoms
D. 0.217 atoms
E. 0.072 atoms
34. How many moles of oxygen atoms are there in 10 moles of KClO_{3} ?
A. 3 mol
B. $\quad 3.3 \mathrm{~mol}$
C. $\quad 10 \mathrm{~mol}$
D. 30 mol
E. $\quad 6.02 \times 10^{24} \mathrm{~mol}$
35. How many sulfur atoms are there in 21.0 g of $\mathrm{Al}_{2} \mathrm{~S}_{3}$?
A. 8.42×10^{22} atoms
B. 2.53×10^{23} atoms
C. 2.14×10^{23} atoms
D. 6.02×10^{23} atoms
E. $\quad 6.30 \times 10^{26}$ atoms
36. How many sulfur atoms are present in 25.6 g of $\mathrm{Al}_{2}\left(\mathrm{~S}_{2} \mathrm{O}_{3}\right)_{3}$?
A. 0.393
B. 6
C. 3.95×10^{22}
D. 7.90×10^{22}
E. 2.37×10^{23}
37. How many fluorine atoms are there in 65 g of CF_{4} ?
A. $\quad 0.74$ atoms
B. $\quad 3.0$ atoms
C. 4.5×10^{23} atoms
D. 1.8×10^{24} atoms
E. 2.4×10^{23} atoms
38. How many moles of O atoms are in 25.7 g of CaSO_{4} ?
A. $\quad 0.189 \mathrm{~mol}$
B. $\quad 0.755 \mathrm{~mol}$
C. $\quad 4.00 \mathrm{~mol}$
D. $1.14 \times 10^{23} \mathrm{~mol}$
E. $4.55 \times 10^{23} \mathrm{~mol}$
39. How many O atoms are there in $51.4 \mathrm{~g} \mathrm{CaSO}_{4}$?
A. 4
B. 2.40×10^{24}
C. 1.13
D. 9.09×10^{23}
E. 2.28×10^{23}
40. How many moles of Cl atoms are there in $65.2 \mathrm{~g} \mathrm{CHCl}_{3}$?
A. $\quad 0.548 \mathrm{~mol}$
B. $\quad 1.09 \mathrm{~mol}$
C. $3.3 \times 10^{23} \mathrm{~mol}$
D. $\quad 1.64 \mathrm{~mol}$
E. $\quad 3.0 \mathrm{~mol}$
41. How many carbon atoms are there in 10 lbs of sugar, $\mathrm{C}_{12} \mathrm{H}_{22} \mathrm{O}_{11}$?
A. 9.6×10^{25} atoms
B. 8.0×10^{24} atoms
C. 159 atoms
D. 4.21 atoms
E. 342 atoms
42. How many grams of sulfur are there in 6.0 g of $\mathrm{Fe}_{2}\left(\mathrm{SO}_{4}\right)_{3}$?
A. $\quad 2.40 \mathrm{~g}$
B. $\quad 0.48 \mathrm{~g}$
C. $\quad 6.00 \mathrm{~g}$
D. 0.92 g
E. 1.44 g
43. How many grams of sodium are there in 10 . g of sodium sulfate, $\mathrm{Na}_{2} \mathrm{SO}_{4}$?
A. $\quad 0.16 \mathrm{~g}$
B. 0.32 g
C. 3.2 g
D. 1.6 g
E. 142 g
44. How many grams of nitrogen are there in 7.5 g of $\mathrm{Ca}\left(\mathrm{NO}_{3}\right)_{2}$?
A. 0.64 g
B. 1.3 g
C. 0.15 g
D. 1.15 g
E. $\quad 2.3 \mathrm{~g}$
45. The mass of four moles of molecular bromine $\left(\mathrm{Br}_{2}\right)$ is
A. 80 g .
B. 320 g .
C. 640 g .
D. $\quad 140 \mathrm{~g}$.
E. $\quad 24 \times 10^{23} \mathrm{~g}$.
46. Calculate the mass of 4.50 moles of chlorine gas, Cl_{2}.
A. $\quad 6.34 \times 10^{-2} \mathrm{~g}$
B. 4.5 g
C. $\quad 15.7 \mathrm{~g}$
D. 160 g
E. 319 g
47. What is the mass of 3.00 moles of ethanol, $\mathrm{C}_{2} \mathrm{H}_{6} \mathrm{O}$?
A. $4.99 \times 10^{-24} \mathrm{~g}$
B. 138 g
C. $\quad 6.52 \times 10^{-2} \mathrm{~g}$
D. 50 g
E. $\quad 1.81 \times 10^{24} \mathrm{~g}$
48. What is the mass of 0.20 mole of $\mathrm{C}_{2} \mathrm{H}_{6} \mathrm{O}$ (ethanol)?
A. 230 g
B. 46 g
C. 23 g
D. 4.6 g
E. none of these
49. What is the mass of $8.25 \times 10^{19} \mathrm{UF}_{6}$ molecules?
A. 352 g
B. $\quad 0.0482 \mathrm{~g}$
C. $\quad 1.37 \times 10^{-4} \mathrm{~g}$
D. $2.90 \times 10^{22} \mathrm{~g}$
E. $\quad 8.25 \times 10^{19} \mathrm{~g}$
50. An average atom of uranium (U) is approximately how many times heavier than an atom of potassium?
A. 6.1 times
B. 4.8 times
C. 2.4 times
D. 12.5 times
E. 7.7 times
51. Boron obtained from borax deposits in Death Valley consists of two isotopes. They are boron-10 and boron- 11 with atomic masses of 10.013 amu and 11.009 amu, respectively. The atomic mass of boron is 10.81 amu (see periodic table). Which isotope of boron is more abundant, boron-10 or boron-11?
A. This cannot be determined from data given.
B. Neither, their abundances are the same.
C. Boron-10
D. Boron-11
52. The element oxygen consists of three naturally occuring isotopes: ${ }^{16} \mathrm{O},{ }^{17} \mathrm{O}$, and ${ }^{18} \mathrm{O}$. The atomic mass of oxygen is 16.0 amu . What can be implied about the relative abundances of these isotopes?
A. More than 50% of all O atoms are ${ }^{17} \mathrm{O}$.
B. Almost all O atoms are ${ }^{18} \mathrm{O}$.
C. Almost all O atoms are ${ }^{17} \mathrm{O}$.
D. The isotopes all have the same abundance, i.e. 33.3%.
E. The abundances of ${ }^{17} \mathrm{O}$ and ${ }^{18} \mathrm{O}$ are very small.
53. The empirical formula of a compound of uranium and fluorine that is composed of 67.6% uranium and 32.4% fluorine is
A. $\mathrm{U}_{2} \mathrm{~F}$
B. $\mathrm{U}_{3} \mathrm{~F}_{4}$
C. UF_{4}
D. UF_{6}
E. UF_{8}
54. The percent composition by mass of a compound is $76.0 \% \mathrm{C}, 12.8 \% \mathrm{H}$, and $11.2 \% \mathrm{O}$. The molar mass of this compound is $284.5 \mathrm{~g} / \mathrm{mol}$. What is the molecular formula of the compound?
A. $\mathrm{C}_{10} \mathrm{H}_{6} \mathrm{O}$
B. $\mathrm{C}_{9} \mathrm{H}_{18} \mathrm{O}$
C. $\mathrm{C}_{16} \mathrm{H}_{28} \mathrm{O}_{4}$
D. $\mathrm{C}_{20} \mathrm{H}_{12} \mathrm{O}_{2}$
E. $\mathrm{C}_{18} \mathrm{H}_{36} \mathrm{O}_{2}$
55. A compound was discovered whose composition by mass is $85.6 \% \mathrm{C}$ and 14.4% H . Which of these choices could be the molecular formula of this compound?
A. CH_{4}
B. $\mathrm{C}_{2} \mathrm{H}_{4}$
C. $\mathrm{C}_{3} \mathrm{H}_{4}$
D. $\mathrm{C}_{2} \mathrm{H}_{6}$
E. $\mathrm{C}_{3} \mathrm{H}_{8}$
56. What is the coefficient of $\mathrm{H}_{2} \mathrm{O}$ when the following equation is properly balanced with the smallest set of whole numbers?
\qquad $\mathrm{Na}+$ \qquad $\mathrm{H}_{2} \mathrm{O} \rightarrow$ \qquad $\mathrm{NaOH}+$ \qquad H_{2}
A. 1
B. 2
C. 3
D. 4
E. 5
57. What is the coefficient of $\mathrm{H}_{2} \mathrm{O}$ when the following equation is properly balanced with the smallest set of whole numbers?
$\ldots \mathrm{Al}_{4} \mathrm{C}_{3}{ }^{+} \ldots \mathrm{H}_{2} \mathrm{O} \rightarrow \ldots \mathrm{Al}(\mathrm{OH})_{3}+\ldots \mathrm{CH}_{4}$
A. 3
B. 4
C. 6
D. 12
E. 24
58. When balanced with the smallest set of whole numbers, the coefficient of O_{2} in the following equation is:
_ $\mathrm{C}_{2} \mathrm{H}_{4}{ }^{+}$_ $\mathrm{O}_{2} \rightarrow$ _ $\mathrm{CO}_{2}{ }^{+}$_ $\mathrm{H}_{2} \mathrm{O}$
A. 1 .
B. 2 .
C. 3 .
D. 4 .
E. 6.
59. When a chemical equation is balanced, it will have a set of whole number coefficients that cannot be reduced to smaller whole numbers. What is the coefficient for O_{2} when the following combustion reaction of a hydrocarbon is balanced?
$\ldots \mathrm{C}_{7} \mathrm{H}_{14}+\ldots \mathrm{O}_{2} \rightarrow \ldots \mathrm{CO}_{2}+\ldots \mathrm{H}_{2} \mathrm{O}$
A. 42
B. 21
C. 11
D. 10
E. none of these
60. What is the coefficient preceding O_{2} when the following combustion reaction of a fatty acid is properly balanced using the smallest set of whole numbers?
$\mathrm{C}_{18} \mathrm{H}_{36} \mathrm{O}_{2}+\ldots \mathrm{O}_{2} \rightarrow$ _ $\mathrm{CO}_{2}+\ldots \mathrm{H}_{2} \mathrm{O}$
A. 1
B. 8
C. 9
D. 26
E. 27
61. What is the coefficient of $\mathrm{H}_{2} \mathrm{SO}_{4}$ when the following equation is properly balanced with the smallest set of whole numbers
\qquad $\mathrm{Ca}_{3}\left(\mathrm{PO}_{4}\right)_{2}+$ \qquad $\mathrm{H}_{2} \mathrm{SO}_{4} \rightarrow$ \qquad $\mathrm{CaSO}_{4}+$ \qquad $\mathrm{H}_{3} \mathrm{PO}_{4}$
A. 3
B. 8
C. 10
D. 11
E. none of these
62. Balance the equation below using the smallest set of whole numbers. What is the coefficient of $\mathrm{H}_{2} \mathrm{O}$?
$\ldots \mathrm{PCl}_{3}(\mathrm{l})+\ldots \mathrm{H}_{2} \mathrm{O}(\mathrm{l}) \rightarrow \ldots \mathrm{H}_{3} \mathrm{PO}_{3}(\mathrm{aq})+\ldots \quad \mathrm{HCl}(\mathrm{aq})$
A. 1
B. 2
C. 3
D. 5
E. none of these
63. What is the coefficient of O_{2} when the following equation is properly balanced with the smallest set of whole numbers?
\qquad $\mathrm{CH}_{3} \mathrm{OH}+\mathrm{O}_{2} \rightarrow$ \qquad $\mathrm{CO}_{2}+\ldots \mathrm{H}_{2} \mathrm{O}$
A. 1
B. 2
C. 3
D. 7
E. none of these
64. Balance the following equation using the smallest set of whole numbers, then add together the coefficients. Don't forget to count coefficients of one.
$\ldots \mathrm{SF}_{4}+\ldots \mathrm{H}_{2} \mathrm{O} \rightarrow$ _ $\mathrm{H}_{2} \mathrm{SO}_{3}+\ldots \mathrm{HF}$
The sum of the coefficients is
A. 4.
B. 6 .
C. 7.
D. 9 .
E. none of these
65. Balance the following equation using the smallest set of whole numbers, then add together the coefficients. Don't forget to count coefficients of one.
\qquad $\mathrm{Cr}+$ \qquad $\mathrm{H}_{2} \mathrm{SO}_{4} \rightarrow \ldots \mathrm{Cr}_{2}\left(\mathrm{SO}_{4}\right)_{3}+$ \qquad H_{2}

The sum of the coefficients is
A. 4.
B. 9 .
C. 11 .
D. 13.
E. 15 .
66. Balance the following equation using the smallest set of whole numbers, then add together the coefficients. Don't forget to count coefficients of one.
$\ldots \mathrm{Al}+\ldots \mathrm{H}_{2} \mathrm{SO}_{4} \rightarrow \ldots \mathrm{Al}_{2}\left(\mathrm{SO}_{4}\right)_{3}+\ldots \mathrm{H}_{2}$
The sum of the coefficients is
A. 3.
B. 5 .
C. 6 .
D. 9 .
E. 12.
67. Balance the following equation using the smallest set of whole numbers, then add together the coefficients. Don't forget to count coefficients of one.
\qquad $\mathrm{CH}_{4}+$ \qquad $\mathrm{Cl}_{2} \rightarrow$ \qquad $\mathrm{CCl}_{4}+$ \qquad HCl

The sum of the coefficients is
A. 4.
B. 6 .
C. 8 .
D. 10 .
E. 12 .
68. Ammonia reacts with diatomic oxygen to form nitric oxide and water vapor:
$4 \mathrm{NH}_{3}+5 \mathrm{O}_{2} \rightarrow 4 \mathrm{NO}+6 \mathrm{H}_{2} \mathrm{O}$
When $40.0 \mathrm{~g} \mathrm{NH}_{3}$ and $50.0 \mathrm{~g} \mathrm{O}_{2}$ are allowed to react, which is the limiting reagent?
A. NH_{3}
B. O_{2}
C. Neither reagent is limiting.
69. Ammonia reacts with diatomic oxygen to form nitric oxide and water vapor:
$4 \mathrm{NH}_{3}+5 \mathrm{O}_{2} \rightarrow 4 \mathrm{NO}+6 \mathrm{H}_{2} \mathrm{O}$
When $20.0 \mathrm{~g} \mathrm{NH}_{3}$ and $50.0 \mathrm{~g} \mathrm{O}_{2}$ are allowed to react, which is the limiting reagent?
A. NH_{3}
B. O_{2}
C. Neither reagent is limiting.
70. When 22.0 g NaCl and $21.0 \mathrm{~g} \mathrm{H}_{2} \mathrm{SO}_{4}$ are mixed and react according to the equation below, which is the limiting reagent?
$2 \mathrm{NaCl}+\mathrm{H}_{2} \mathrm{SO}_{4} \rightarrow \mathrm{Na}_{2} \mathrm{SO}_{4}+2 \mathrm{HCl}$
A. NaCl
B. $\mathrm{H}_{2} \mathrm{SO}_{4}$
C. $\mathrm{Na}_{2} \mathrm{SO}_{4}$
D. HCl
E. No reagent is limiting.
71. Vanadium (V) oxide reacts with calcium according to the chemical equation below. When 10.0 moles of $\mathrm{V}_{2} \mathrm{O}_{5}$ are mixed with 10.0 moles of Ca , which is the limiting reagent?
$\mathrm{V}_{2} \mathrm{O}_{5}(\mathrm{~s})+5 \mathrm{Ca}(\mathrm{l}) \rightarrow 2 \mathrm{~V}(\mathrm{l})+5 \mathrm{CaO}(\mathrm{s})$
A. $\mathrm{V}_{2} \mathrm{O}_{5}$
B. Ca
C. V
D. CaO
E. No reagent is limiting.
72. Chlorine gas can be made from the reaction of manganese dioxide with hydrochloric acid. Which is the limiting reagent when 28 g of MnO_{2} are mixed with 42 g of HCl ?
$\mathrm{MnO}_{2}(\mathrm{~s})+4 \mathrm{HCl}(\mathrm{aq}) \rightarrow \mathrm{MnCl}_{2}(\mathrm{aq})+2 \mathrm{H}_{2} \mathrm{O}(\mathrm{l})+\mathrm{Cl}_{2}(\mathrm{~g})$
A. MnO_{2}
B. HCl
C. MnCl_{2}
D. Cl_{2}
E. No reagent is limiting.
73. How many grams of Cl_{2} can be prepared from the reaction of 16.0 g of MnO_{2} and 30.0 g of HCl according to the following chemical equation?
$\mathrm{MnO}_{2}+4 \mathrm{HCl} \rightarrow \mathrm{MnCl}_{2}+\mathrm{Cl}_{2}+2 \mathrm{H}_{2} \mathrm{O}$
A. $\quad 0.82 \mathrm{~g}$
B. 5.8 g
C. $\quad 13.0 \mathrm{~g}$
D. $\quad 14.6 \mathrm{~g}$
E. 58.4 g
74. Hydrochloric acid can be prepared by the following reaction:
$2 \mathrm{NaCl}(\mathrm{s})+\mathrm{H}_{2} \mathrm{SO}_{4}(\mathrm{aq}) \rightarrow 2 \mathrm{HCl}(\mathrm{g})+\mathrm{Na}_{2} \mathrm{SO}_{4}(\mathrm{~s})$
How many grams of HCl can be prepared from $2.00 \mathrm{~mol}_{2} \mathrm{SO}_{4}$ and 150 g NaCl ?
A. $\quad 7.30 \mathrm{~g}$
B. $\quad 93.5 \mathrm{~g}$
C. 146 g
D. 150 g
E. 196 g
75. Calculate the mass of FeS formed when 9.42 g of Fe reacts with 8.50 g of S .
$\mathrm{Fe}(\mathrm{s})+\mathrm{S}(\mathrm{s}) \rightarrow \mathrm{FeS}(\mathrm{s})$
A. $\quad 17.9 \mathrm{~g}$
B. $\quad 87.9 \mathrm{~g}$
C. 26.0 g
D. 14.8 g
E. $\quad 1.91 \times 10^{-3} \mathrm{~g}$
76. What is the theoretical yield of chromium that can be produced by the reaction of 40.0 g of $\mathrm{Cr}_{2} \mathrm{O}_{3}$ with 8.00 g of aluminum according to the chemical equation below?
$2 \mathrm{Al}+\mathrm{Cr}_{2} \mathrm{O}_{3} \rightarrow \mathrm{Al}_{2} \mathrm{O}_{3}+2 \mathrm{Cr}$
A. 7.7 g
B. $\quad 15.4 \mathrm{~g}$
C. 27.3 g
D. 30.8 g
E. 49.9 g
77. Calculate the mass of excess reagent remaining at the end of the reaction in which 90.0 g of SO_{2} are mixed with 100.0 g of O_{2}.
$2 \mathrm{SO}_{2}+\mathrm{O}_{2} \rightarrow 2 \mathrm{SO}_{3}$
A. $\quad 11.5 \mathrm{~g}$
B. 22.5 g
C. $\quad 67.5 \mathrm{~g}$
D. 77.5 g
E. 400 g
78. What is the maximum number of grams of ammonia, NH_{3}, that can be obtained from the reaction of 10.0 g of H_{2} and 80.0 g of N_{2} ?
$\mathrm{N}_{2}+3 \mathrm{H}_{2} \rightarrow 2 \mathrm{NH}_{3}$
A. $\quad 28.4 \mathrm{~g}$
B. 48.6 g
C. $\quad 56.7 \mathrm{~g}$
D. 90.0 g
E. $\quad 97.1 \mathrm{~g}$
79. How many grams of water could be made from $5.0 \mathrm{~mol} \mathrm{H}_{2}$ and $3.0 \mathrm{~mol} \mathrm{O}_{2}$?
A. $90 . \mathrm{g}$
B. 36 g
C. $\quad 42 \mathrm{~g}$
D. 45 g
E. 108 g
80. Ammonia reacts with diatomic oxygen to form nitric oxide and water vapor:
$4 \mathrm{NH}_{3}+5 \mathrm{O}_{2} \rightarrow 4 \mathrm{NO}+6 \mathrm{H}_{2} \mathrm{O}$
What is the theoretical yield of water, in moles, when $40.0 \mathrm{~g} \mathrm{NH}_{3}$ and $50.0 \mathrm{~g} \mathrm{O}_{2}$ are mixed and allowed to react?
A. $\quad 1.30 \mathrm{~mol}$
B. $\quad 1.57 \mathrm{~mol}$
C. $\quad 1.87 \mathrm{~mol}$
D. $\quad 3.53 \mathrm{~mol}$
E. $\quad 2.87 \mathrm{~mol}$
81. What is the theoretical yield of vanadium, in moles, that can be produced by the reaction of 2.0 mole of $\mathrm{V}_{2} \mathrm{O}_{5}$ with 6.0 mole of calcium based on the following chemical equation?

$$
\mathrm{V}_{2} \mathrm{O}_{5}(\mathrm{~s})+5 \mathrm{Ca}(\mathrm{l}) \rightarrow 2 \mathrm{~V}(\mathrm{l})+5 \mathrm{CaO}(\mathrm{~s})
$$

A. $\quad 1.0 \mathrm{~mol}$
B. $\quad 1.6 \mathrm{~mol}$
C. $\quad 2.0 \mathrm{~mol}$
D. 2.4 mol
E. $\quad 4.0 \mathrm{~mol}$
82. What is the theoretical yield of vanadium, in moles, that can be produced by the reaction of 1.0 mole of $\mathrm{V}_{2} \mathrm{O}_{5}$ with 4.0 mole of calcium based on the following chemical equation?

$$
\mathrm{V}_{2} \mathrm{O}_{5}(\mathrm{~s})+5 \mathrm{Ca}(\mathrm{l}) \rightarrow 2 \mathrm{~V}(\mathrm{l})+5 \mathrm{CaO}(\mathrm{~s})
$$

A. $\quad 1.0 \mathrm{~mol}$
B. $\quad 1.6 \mathrm{~mol}$
C. $\quad 2.0 \mathrm{~mol}$
D. $\quad 0.80 \mathrm{~mol}$
E. $\quad 3.2 \mathrm{~mol}$
83. What is the theoretical yield of vanadium that can be produced by the reaction of 40.0 g of $\mathrm{V}_{2} \mathrm{O}_{5}$ with 40.0 g of calcium based on the following chemical equation?

$$
\mathrm{V}_{2} \mathrm{O}_{5}(\mathrm{~s})+5 \mathrm{Ca}(\mathrm{l}) \rightarrow 2 \mathrm{~V}(\mathrm{l})+5 \mathrm{CaO}(\mathrm{~s})
$$

A. $\quad 11.2 \mathrm{~g}$
B. 5.6 g
C. 22.4 g
D. 40.0 g
E. 20.3 g
84. How many grams of Cr can be produced by the reaction of 44.1 g of $\mathrm{Cr}_{2} \mathrm{O}_{3}$ with 35.0 g of Al according to the following chemical equation?

$$
2 \mathrm{Al}+\mathrm{Cr}_{2} \mathrm{O}_{3} \rightarrow \mathrm{Al}_{2} \mathrm{O}_{3}+2 \mathrm{Cr}
$$

A. $\quad 7.56 \mathrm{~g}$
B. $\quad 30.2 \mathrm{~g}$
C. 67.4 g
D. 104 g
E. 60.4 g
85. What is the theoretical yield of aluminum that can be produced by the reaction of 60.0 g of aluminum oxide with 30.0 g of carbon according to the following chemical equation?

$$
\mathrm{Al}_{2} \mathrm{O}_{3}+3 \mathrm{C} \rightarrow 2 \mathrm{Al}+3 \mathrm{CO}
$$

A. 30.0 g
B. 7.9 g
C. $\quad 101.2 \mathrm{~g}$
D. 45.0 g
E. $\quad 31.8 \mathrm{~g}$
86. A 1.375 g sample of mannitol, a sugar found in seaweed, is burned completely in oxygen to give 1.993 g of carbon dioxide and 0.9519 g of water. The empirical formula of mannitol is
A. CHO
B. $\mathrm{CH}_{7} \mathrm{O}_{3}$
C. $\mathrm{C}_{3} \mathrm{H}_{2} \mathrm{O}$
D. $\mathrm{C}_{3} \mathrm{H}_{7} \mathrm{O}_{3}$
E. $\mathrm{CH}_{2} \mathrm{O}$
87. A 0.8715 g sample of sorbic acid, a compound first obtained from the berries of a certain ash tree, is burned completely in oxygen to give 2.053 g of carbon dioxide and 0.5601 g of water. The empirical formula of sorbic acid is
A. $\mathrm{CH}_{2} \mathrm{O}$
B. $\mathrm{C}_{3} \mathrm{H}_{4} \mathrm{O}$
C. $\mathrm{CH}_{4} \mathrm{O}_{3}$
D. $\mathrm{C}_{3} \mathrm{H}_{4} \mathrm{O}_{2}$
E. $\mathrm{C}_{2} \mathrm{H}_{4} \mathrm{O}_{2}$
88. The first step in the Ostwald process for producing nitric acid is
$4 \mathrm{NH}_{3}(\mathrm{~g})+5 \mathrm{O}_{2}(\mathrm{~g}) \rightarrow 4 \mathrm{NO}(\mathrm{g})+6 \mathrm{H}_{2} \mathrm{O}(\mathrm{g})$.
If the reaction of $150 . \mathrm{g}$ of ammonia with 150 g of oxygen gas yields $87 . \mathrm{g}$ of nitric oxide (NO), what is the percent yield of this reaction?
A. 100%
B. 49%
C. 77%
D. 33%
E. 62%
89. One way of obtaining pure sodium carbonate is through the decomposition of the mineral trona, $\mathrm{Na}_{5}\left(\mathrm{CO}_{3}\right)_{2}\left(\mathrm{HCO}_{3}\right) \cdot 2 \mathrm{H}_{2} \mathrm{O}$,
$\mathrm{Na}_{5}\left(\mathrm{CO}_{3}\right)_{2}\left(\mathrm{HCO}_{3}\right) \cdot 2 \mathrm{H}_{2} \mathrm{O}(\mathrm{s}) \rightarrow 5 \mathrm{Na}_{2} \mathrm{CO}_{3}(\mathrm{~s})+\mathrm{CO}_{2}(\mathrm{~g})+3 \mathrm{H}_{2} \mathrm{O}(\mathrm{g})$
When 1.00 metric ton $\left(1 \times 10^{3} \mathrm{~kg}\right)$ of trona is decomposed, 0.74 metric ton of $\mathrm{Na}_{2} \mathrm{CO}_{3}$ is recovered. What is the percent yield of this reaction?
A. 93%
B. 43%
C. 22%
D. 83%
E. 17%
90. When octane $\left(\mathrm{C}_{8} \mathrm{H}_{18}\right)$ is burned in a particular internal combustion engine, the yield of products (carbon dioxide and water) is 93%. What mass of carbon dioxide will be produced in this engine when 15.0 g of octane is burned with 15.0 g of oxygen gas?
A. 13. g
B. $12 . \mathrm{g}$
C. 21 g
D. $54 . \mathrm{g}$
E. $43 . \mathrm{g}$
91. The Hall process for the production of aluminum involves the reaction of aluminum oxide with elemental carbon to give aluminum metal and carbon monoxide. If the yield of this reaction is 75%, what mass of aluminum metal can be produced from the reaction of 1.65×10^{6} of aluminum oxide with 1.50×10^{6} g of carbon?
A. $1.6 \times 10^{5} \mathrm{~g}$
B. $\quad 3.3 \times 10^{5} \mathrm{~g}$
C. $6.6 \times 10^{5} \mathrm{~g}$
D. $8.7 \times 10^{5} \mathrm{~g}$
E. $\quad 1.7 \times 10^{6} \mathrm{~g}$
92. The Hall process for the production of aluminum involves the reaction of aluminum oxide with elemental carbon to give aluminum metal and carbon monoxide. If the yield of this reaction is 82% and aluminum ore is 71% by mass aluminum oxide, what mass of aluminum ore must be mined in order to produce $1.0 \times 10^{3} \mathrm{~kg}$ (1 metric ton) of aluminum metal by the Hall process?
A. $1.8 \times 10^{3} \mathrm{~kg}$
B. $2.2 \times 10^{3} \mathrm{~kg}$
C. $\quad 1.1 \times 10^{3} \mathrm{~kg}$
D. $1.6 \times 10^{3} \mathrm{~kg}$
E. $\quad 3.3 \times 10^{3} \mathrm{~kg}$
93. A method for producing pure copper metal involves the reaction of copper(I) sulfide with oxygen gas to give copper metal and sulfur dioxide. Suppose the yield of this reaction is 87%. What mass of a copper ore consisting of 46% copper(I) sulfide must be mined in order to produce $1.0 \times 10^{3} \mathrm{~kg}$ (1.0 metric ton) of copper metal?
A. $\quad 1.4 \times 10^{3} \mathrm{~kg}$
B. $3.2 \times 10^{3} \mathrm{~kg}$
C. $1.3 \times 10^{3} \mathrm{~kg}$
D. $1.5 \times 10^{3} \mathrm{~kg}$
E. $\quad 8.0 \times 10^{3} \mathrm{~kg}$
94. Solid sodium hydrogen carbonate (also known as sodium bicarbonate) can be decomposed to form solid sodium carbonate, gaseous carbon dioxide, and water vapor. When the balanced chemical reaction for this process is written such that the coefficient of water is 1 , what is the coefficient of carbon dioxide?
A. 0
B. 1
C. 2
D. $1 / 2$
E. cannot be determined
95. Aluminum hydroxide reacts with nitric acid to form aluminum nitrate and water. What mass of water can be formed by the reaction of 15.0 g of aluminum hydroxide with excess nitric acid?
A. $\quad 1.15 \mathrm{~g}$
B. $\quad 3.46 \mathrm{~g}$
C. 45.0 g
D. 6.14 g
E. $\quad 10.4 \mathrm{~g}$
96. Liquid hexane, $\mathrm{C}_{6} \mathrm{H}_{14}$, burns in oxygen gas to yield carbon dioxide and water. What is the minimum mass of oxygen required for the complete reaction of 10.0 mL of hexane?
[Given: density of hexane $=0.660 \mathrm{~g} / \mathrm{mL}$]
A. $\quad 3.71 \mathrm{~g}$
B. 2.45 g
C. 23.3 g
D. 46.6 g
E. $\quad 35.3 \mathrm{~g}$
97. Liquid heptane, $\mathrm{C}_{7} \mathrm{H}_{16}$, burns in oxygen gas to yield carbon dioxide and water. What mass of carbon dioxide is produced when 15.0 mL of heptane burns completely?
[Given: density of heptane $=0.6838 \mathrm{~g} / \mathrm{mL}$]
A. $\quad 46.1 \mathrm{~g}$
B. 71.8 g
C. $\quad 4.49 \mathrm{~g}$
D. 6.59 g
E. 31.5 g
98. Liquid heptane, $\mathrm{C}_{7} \mathrm{H}_{16}$, burns in oxygen gas to yield carbon dioxide and water. What mass of water is produced when 15.0 mL of heptane burns completely?
[Given: density of heptane $=0.6838 \mathrm{~g} / \mathrm{mL}$]
A. $\quad 14.8 \mathrm{~g}$
B. $\quad 2.70 \mathrm{~g}$
C. 31.6 g
D. 1.85 g
E. 21.6 g
99. Liquid heptane, $\mathrm{C}_{7} \mathrm{H}_{16}$, burns in oxygen gas to yield carbon dioxide and water. What is the minimum mass of oxygen required for the complete reaction of 25.5 mL of heptane?
[Given: density of heptane $=0.6838 \mathrm{~g} / \mathrm{mL}$]
A. 8.14 g
B. $\quad 89.6 \mathrm{~g}$
C. 61.3 g
D. $\quad 30.6 \mathrm{~g}$
E. $\quad 5.57 \mathrm{~g}$
100. A gold wire has a diameter of 1.00 mm . What length of this wire contains exactly 1.00 mol of gold?
[Given: density of $\mathrm{Au}=17.0 \mathrm{~g} / \mathrm{cm}^{3}$]
A. 2630 m
B. $\quad 3.69 \mathrm{~m}$
C. 251 m
D. 14.8 m
E. $\quad 62.7 \mathrm{~m}$
101. A silver wire has a diameter of 0.500 mm . What length of this wire contains exactly 1.00 mol of silver?
[Given: density of $\mathrm{Ag}=10.5 \mathrm{~g} / \mathrm{cm}^{3}$]
A. $\quad 52.3 \mathrm{~m}$
B. 222 m
C. $\quad 13.1 \mathrm{~m}$
D. 2.01 m
E. 890 m
102. A copper wire has a diameter of 2.00 mm . What length of this wire contains exactly 1.00 mol of copper?
[Given: density of $\mathrm{Cu}=8.92 \mathrm{~g} / \mathrm{cm}^{3}$]
A. 0.178 m
B. 0.567 m
C. $\quad 180 \mathrm{~m}$
D. 45.1 m
E. 2.27 m

Chapter 3 Mass Relationships in Chemical Reactions Key

1.D	26.E	51.D	76.B
		52.E	77.D
2.B	27.E		
		53.D	78.C
3.C	28.C		
		54.E	79.A
4.D	29.D		
		55.B	80.C
5.A	30.D		
		56.B	81.D
6.D	31.C		
		57.D	82.B
7.E	32.A	58.C	83.E
8.D	$\begin{aligned} & \text { 33.C } \\ & \text { 34.D } \end{aligned}$		
		59.B	84.B
9.A	35.B		85.E
		60.D	85.E
10.E	36.E	61.A	86.D
11.B			87.
	37.D	62.C	87.B
12.B	38.B	63.C	88.D
13.D	39.D	64.D	89.A
14.E		65.B	90.B
15.B	40.D	66.D	91.C
16.A	41.A 42.E		92.E
17.B	42.E		93.B
18.E	43.C	68.B	94.B
19.B	44.B 45.C	69.A	95.E
20.B	45.C	70.A	
	46.E	71.B	96.C
21.A	47.B		97.E
22.B		72.B	
	48.E		98.A
23.D	49.B		99.C
		74.B	
			100.D
25.C		75.D	101.A
			102.E

