\qquad

Question 1.

The vapor pressure of cesium at $\mathbf{3 7 3} \mathbf{C}$ is 10 torr. What is the pressure in atmospheres?

E a) 1.0×10^{-1}
[b) 1.0×10^{1}
E
c) 1.3×10^{-2}

E
d) 1.3×10^{-1}

E e) 1.3
Question 2.
The vapor pressure of mercury is $\mathbf{0 . 0 0 1 2}$ torr at 20 C . What is this pressure in atmospheres?

D a) 6.3×10^{-5}
[
b) 1.6×10^{-5}
[
c) 1.6×10^{-6}

E
d) 6.3×10^{-6}

E
e) 1.2×10^{-3}

Question 3.
The vapor pressure of gallium at 1350 C is $1.3 \times 10^{-3} \mathrm{~atm}$. What is this pressure in mm Hg?

L
a) 0.099
b) 9.9
[
c) 0.99

E
d) 0.013

C
e) 0.0013
\qquad

Question 4.

A weather record low pressure is recorded as 88.4 kPa . What is the pressure in cm Hg ?

$$
\begin{array}{ll}
\mathbb{E}_{\text {a) }} & 73.1 \\
\mathbb{E}_{\text {b) }} & 66.3 \\
\mathbb{E}_{\text {c) }} & 69.2 \\
\mathbb{E}_{\text {d) }} & 64.5 \\
\mathbb{E}_{\text {e) }} & 72.3
\end{array}
$$

Question 5

The pressure of a gas is reported as 75 kPa . What is the pressure in atmospheres?
[a) 0.69
E b) 0.74
c) 0.72
[
d) 0.76
[
e) 0.79

Question 6.
The pressure in a basketball is $22.7 \mathrm{lb} / \mathrm{in}^{2}$. What is the pressure in kPa ?
C
a) 164
b) 156
c) 125
d) 142

C
e) 138

Question 7.
A 25 L cylinder contains 128 g of nitrogen gas at $10^{\circ} \mathrm{C}$. How many grams of nitrogen must be released to reduce the pressure to 1.75 atm assuming ideal gas
\qquad
behavior?
(Atomic weight: $\mathrm{N}=14.01$).

$$
\begin{array}{ll}
\mathbb{E}_{\text {a) }} & 90 \\
\mathrm{E}_{\text {b) }} & 75 \\
\mathrm{E}_{\text {c) }} & 82 \\
\mathbb{E}_{\text {d) }} & 65 \\
\mathbb{E}_{\text {e) }} & 58
\end{array}
$$

Question 8.
A 25 L cylinder contains 128 g of nitrogen gas at $10^{\circ} \mathrm{C}$. How many grams of nitrogen must be added to increase the pressure to 5.00 atm assuming ideal gas behavior?
(Atomic weight: $\mathrm{N}=14.01$).

$$
\begin{aligned}
& \text { E } \\
& \text { a) } 25.4 \\
& \text { b) } 22.7 \\
& \text { c) } 15.9 \\
& \text { E } \\
& \text { d) } 12.5 \\
& \text { e) } 18.9
\end{aligned}
$$

Question 9.
How many nanograms of helium exist in a 250 mL container at 1.5×10^{-8} torr and $1200^{\circ} \mathrm{C}$?
(Atomic weight: $\mathrm{He}=4.00$).
E a) 2.2×10^{-4}
E b) 1.6×10^{-4}
E c) 2.2×10^{-2}
D d) 3.3×10^{-3}
E e) 1.6×10^{-1}
Question 10.
\qquad

A barge on the Ohio river contains $\mathbf{6 2 5}$ tons of liquid chlorine under pressure. What volume (m^{3}) would the chlorine occupy at 730 torr and $20^{\circ} \mathrm{C}$? (Atomic weight: $\mathrm{Cl}=35.45$).

$$
\begin{array}{ll}
\mathbb{E}_{\text {a) }} & 5.00 \times 10^{4} \\
\mathbb{C}_{\text {b) }} & 1.00 \times 10^{5} \\
\mathbb{C}_{\text {c) }} & 2.00 \times 10^{5} \\
\mathrm{C}_{\text {d) }} & 1.00 \times 10^{3} \\
\mathbb{C}_{\text {e) }} & 2.00 \times 10^{3}
\end{array}
$$

Question 11

What volume (L) is occupied by 19.6 g of methane $\left(\mathrm{CH}_{4}\right)$ at $27^{\circ} \mathrm{C}$ and 1.59 atm ? (Atomic weights: $\mathrm{C}=12.01, \mathrm{H}=1.008$).

$$
\begin{aligned}
& \text { L } \\
& \text { a) } 23.2 \\
& \text { b) } 27.7 \\
& \text { c) } 18.9 \\
& \text { d) } 30.2 \\
& \text { [e) } 17.1
\end{aligned}
$$

Question 12.

What volume (in L) is occupied by 3.50 g of chlorine gas at $45^{\circ} \mathrm{C}$ and 745 mm Hg ? (Atomic weight: $\mathrm{Cl}=35.45$).
a) 1.64
b) 1.04

E
c) 1.31
[
d) 0.66
e) 1.50

Question 13.
\qquad

A 1.0 g sample of a radioactive element decays to produce 1.16×10^{18} alpha particles per year. Each alpha particle becomes a helium atom. What pressure in Pa of helium is produced in a 125 mL volume at $25^{\circ} \mathrm{C}$? ($\left.1 \mathbf{~ a t m}=101.3 \mathrm{kPa}\right)$.

$$
\begin{array}{lll}
\mathrm{E} & \text { a) } & 31.6 \\
\mathrm{E} & \text { b) } & 28.2 \\
\mathrm{E} & \text { c) } & 41.4 \\
\mathrm{E} & \text { d) } & 35.4 \\
\mathrm{E} & \text { e) } & 38.2
\end{array}
$$

Question 14.

Assume 453.6 g of dry ice (solid CO_{2}) is placed in an evacuated 50.0 L closed tank. What will be the pressure in the tank in atmospheres at a temperature of $45^{\circ} \mathrm{C}$.
Assume that all the CO_{2} has been converted into gas?
(Atomic weights: $\mathrm{C}=12.01, \mathrm{O}=16.00$).
E
a) 9.15
b) 10.8
c) 7.25
d) 6.10
e) 5.38

Question 15.
A 4.5 L container at $70^{\circ} \mathrm{C}$ has 220 grams of SF_{6}. What is the pressure (atm) of SF_{6} in atm?
(Atomic weights: $S=32.06, F=19.00$).

$\mathrm{E}_{\text {a) }}$	8.6
$\mathrm{E}_{\text {b) }}$	5.7
$\mathrm{E}_{\text {c) }}$	6.2
$\mathrm{E}_{\text {d) }}$	9.9
$\mathrm{E}_{\text {e) }}$	9.4

\qquad

Question 16.
The pressure of sodium vapor in a 1.00 L container is 10 torr at $1000^{\circ} \mathrm{C}$. How many moles are in the container?
(Atomic weight: $\mathbf{N a}=\mathbf{2 2 . 9 9}$).

$$
\begin{array}{ll}
\mathrm{E}_{\text {a) }} & 1.6 \times 10^{-2} \\
\mathrm{E}^{-2} & 1.3 \times 10^{-3} \\
\mathrm{E}_{\text {c) }} & 1.3 \times 10^{-4} \\
\mathrm{E}_{\text {d) }} & 1.6 \times 10^{-4} \\
\mathrm{E}_{\text {e) }} & 2.1 \times 10^{-2}
\end{array}
$$

Question 17.
How many moles of helium exist in a 250 mL container at 1.5×10^{-8} torr and $1200^{\circ} \mathrm{C}$? (Atomic weight: $\mathrm{He}=4.00$).

E
a) 3.7×10^{-12}

E
b) 4.5×10^{-11}

E
c) 4.1×10^{-14}

E
d) 5.0×10^{-14}
e) 3.7×10^{-11}

Question 18.
A small cylinder of helium for use in chemistry lectures has volume of 334 mL . How many moles of helium are contained in the cylinder at a pressure of 154 atm and $23^{\circ} \mathrm{C}$?
(Atomic weight: $\mathrm{He}=4.00$).

| $\mathrm{E}_{\text {a) }}$ | 1.95 |
| :--- | :--- | :--- |
| $\mathrm{E}_{\text {b) }}$ | 1.52 |
| $\mathrm{E}_{\text {c) }}$ | $\mathbf{2 . 1 2}$ |
| $\mathrm{E}_{\text {d) }}$ | 1.80 |
| $\mathrm{E}_{\text {e) }}$ | 1.06 |

\qquad

Question 19.

The pressure in a 2.0 L container is 1.5×10^{-7} torr at $1115^{\circ} \mathrm{K}$. How many gaseous molecules are in the container?
C a) 4.2×10^{10}
D b) 4.2×10^{10}
E c) 2.0×10^{15}
[
d) 2.6×10^{12}
C e) 3.4×10^{9}

Question 20.
The Goodyear blimp has 5.1×10^{6} liters of helium at $25^{\circ} \mathrm{C}$ and 1.00 atm . How many molecules of helium are in the blimp?
(Atomic weight: $\mathrm{He}=4.00$).
E a) 1.3×10^{28}
E b) 2.6×10^{27}
E
c) 2.6×10^{28}

E
d) 1.3×10^{29}

E e) 2.9×10^{29}
Question 21.
How many atoms of neon exist in a $\mathbf{2 5 0} \mathbf{~ m L}$ container at 1.5×10^{-6} torr and $1200^{\circ} \mathrm{C}$?
(Atomic weight: $\mathrm{Ne}=\mathbf{2 0 . 2}$).
C a) 3.7×10^{12}
D b) 3.7×10^{11}
©
c) 2.5×10^{11}
[
d) 2.5×10^{12}

C e) 4.9×10^{10}
Question 22.
\qquad

What is the density (g / L) of pure oxygen gas at STP?
(Atomic weight: $\mathrm{O}=16$).
E
a) 1.52
b) 1.34

E
c) 1.24

E d) 1.43
E e) 1.12
Question 23.
What is the density $(\mathrm{g} / \mathrm{L})$ of nitrogen at STP?
(Atomic weight: $\mathrm{N}=14.01$).

| $\mathrm{E}_{\text {a) }}$ | 0.800 |
| :--- | :--- | :--- |
| $\mathrm{E}^{\text {b) }}$ | 1.60 |
| $\mathrm{E}_{\text {c) }}$ | 0.625 |
| $\mathrm{E}^{\text {d }}$ | 1.25 |
| $\mathrm{E}_{\text {e) }}$ | 0.312 |

Question 24.

What is the density in g / L of BrF_{3} at STP? (Atomic weights: $\mathrm{Br}=\mathbf{7 9 . 9 0}, \mathrm{F}=19.00$).

C
a) 5.77
b) 4.35
c) 7.02
[
d) 6.11
e) 5.23

Question 25.
A 2.15 g sample of a gas occupies 750 mL at STP, What is the molecular weight of the gas at 125 C ?
\qquad

$$
\begin{aligned}
& \text { [a) } 70.1 \\
& \text { b) } 75.0 \\
& \text { c) } 48.2 \\
& \text { d) } 64.3 \\
& \text { E e) } 30.7
\end{aligned}
$$

Question 26.
The density of a hydrocarbon at STP is $1.97 \mathrm{~g} / \mathrm{L}$. What is the molecular weight of the gas?

$$
\begin{array}{ll}
E_{\text {a) }} & 40 \\
E^{2} & 30 \\
E_{\text {b) }} & 30 \\
E_{\text {c) }} & 26 \\
E_{\text {d) }} & 44 \\
\text { e) } & 16
\end{array}
$$

Question 27.

The density of a fluoride of a nonmetal is $5.63 \mathrm{~g} / \mathrm{L}$ at STP. What is the molecular weight of the gas?

$\mathrm{E}_{\text {a) }}$	104
$\mathrm{E}_{\text {b) }}$	145
$\mathrm{E}_{\text {c) }}$	$\mathbf{8 8 . 0}$
$\mathrm{E}_{\text {d) }}$	126
$\mathrm{E}_{\text {e) }}$	136

Question 28.
At $1000^{\circ} \mathrm{C}$ and 10 torr, the density of a certain element in the gaseous state is 2.9 x $10^{-3} \mathrm{~g} / \mathrm{L}$. Using the atomic weights given in parenthesis, determine the identity of the element.
[
a) $\mathbf{H g}(201)$
[
b) $\mathrm{Na}(23)$
\qquad
c) $\mathrm{K}(39)$

E
d) $\mathrm{Ne}(20)$
e) $\mathrm{Rb}(85.5)$

Question 29.
The density of a gaseous element at $310^{\circ} \mathrm{C}$ and 775 mm Hg is $2.64 \mathrm{~g} / \mathrm{L}$. What is the molecular weight of the element?
a) 93

E
b) 124
c) 84

E
d) 106

■
e) 114

Question 30.
At $950^{\circ} \mathrm{C}$ and 15 torr, the density of a certain element in the gaseous state is $1.68 \mathbf{x}$ $10^{-2} \mathrm{~g} / \mathrm{L}$. Using the atomic weights given in parenthesis, determine the identity of the element.

$\mathbb{E}_{\text {a) }}$	$\mathrm{Hg}(201)$
$\mathbb{E}_{\text {b) }}$	$\mathrm{Rb}(85.5)$
$\mathbb{E}_{\text {c) }}$	$\mathrm{K}(39)$
$\mathrm{E}_{\text {d) }}$	$\mathrm{Na}(23)$
$\mathrm{E}_{\text {e) }}$	$\mathrm{Ne}(20)$

Question 31.
A gaseous mixture consists of $\mathbf{5 0 . 0 \%} \mathrm{O}_{\mathbf{2}}, \mathbf{2 5 . 0 \%} \mathrm{N}_{\mathbf{2}}$ and $\mathbf{2 5 . 0 \%} \mathrm{Cl}_{\mathbf{2}}$ by mass and is maintained at STP. What is the partial pressure (atm) of \mathbf{N}_{2} in the mixture?
(Atomic weights: $\mathrm{O}=16.00, \mathrm{~N}=14.01, \mathrm{Cl}=35.45$).
a) 0.251

E
b) 0.075
[
c) $\mathbf{0 . 4 2 6}$
\qquad

$$
\begin{array}{lll}
E & \text { d) } & 0.126 \\
\mathrm{E} & \text { e) } & 0.318
\end{array}
$$

Question 32.
A mixture of 3.65 g of $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ and 1.50 g of CH_{4} is contained in a 50.0 mL container at $400^{\circ} \mathrm{C}$. What is the mole fraction of $\mathrm{CH}_{2} \mathrm{Cl}_{2}$?
(Atomic weights: $\mathrm{C}=12.01, \mathrm{Cl}=35.45, \mathrm{H}=1.008$).
E
a) 0.520
b) 0.452

E c) 0.244
[
d) 0.684
e) 0.316

Question 33.
A 10.0 L flask contains $\mathbf{0 . 2 0 0}$ moles of $\mathrm{CH}_{\mathbf{4}}, \mathbf{0 . 3 0 0}$ moles of $\mathrm{C}_{\mathbf{2}} \mathbf{H}_{\mathbf{6}}$ and $\mathbf{0 . 4 0 0}$ moles of $\mathrm{C}_{3} \mathrm{H}_{8}$ at $25^{\circ} \mathrm{C}$. What is the total pressure in atm?
(Atomic weights: $\mathrm{C}=12.01, \mathrm{H}=1.008$).
E
a) 0.734
b) 0.621
c) 0.979
[
d) 0.489
e) 2.20

Question 34.
Two identical balloons are filled, one with helium and one with nitrogen at the same temperature. If the nitrogen balloon leaks at the rate of 75 mL per hour, what will be the rate of leakage from the helium balloon?
(Atomic weights: $\mathrm{He}=4.00, \mathrm{~N}=14.01$).
a) $122 \mathrm{~mL} / \mathrm{hr}$
[
b) $198 \mathrm{~mL} / \mathrm{hr}$
\qquad

$$
\mathrm{E}
$$

c) $28 \mathrm{~mL} / \mathrm{hr}$

E
d) $14 \mathrm{~mL} / \mathrm{hr}$
e) $75 \mathrm{~mL} / \mathrm{hr}$

Question 35.
A mixture of 0.50 mole $\mathrm{H}_{\mathbf{2}}$ and $\mathbf{0 . 5 0}$ mole of $\mathrm{SO}_{\mathbf{2}}$ is introduced into a $\mathbf{1 0 . 0} \mathrm{L}$ container at $25^{\circ} \mathrm{C}$. The container has pinhole leak. After a period of time: (Atomic weights: $\mathrm{H}=1.008, \mathrm{~S}=32.06, \mathrm{O}=16.00$).

b) the partial pressure of $\mathrm{SO}_{\mathbf{2}}$ exceeds that of $\mathrm{H}_{\mathbf{2}}$ in the remaining gas
c) the partial pressures of the two gases remain equal throughout this time

Question 36.
Which gases, $\mathrm{N}_{2} \mathrm{O}, \mathrm{C}_{2} \mathrm{H}_{2}$, NO , diffuse more slowly than O_{2} under identical experimental conditions?
(Atomic weights: $\mathrm{N}=14.01, \mathrm{O}=16.00, \mathrm{C}=12.01, \mathrm{H}=1.008$).
a) NO and $\mathrm{C}_{2} \mathrm{H}_{2}$
b) $\mathrm{N}_{2} \mathrm{O}$ only
c) $\mathrm{C}_{2} \mathrm{H}_{2}$ only
d) $\mathrm{N}_{2} \mathrm{O}$ and $\mathrm{C}_{2} \mathrm{H}_{2}$
e) NO only

Question 37.
Calculate the relative rate of diffusion of HF compared to HCl . (Atomic weights: $\mathrm{H}=1.008, \mathrm{Cl}=35.45, \mathrm{~F}=19.00$).

E
a) 1.21

E
b) 0.741

E
c) 0.549
\qquad

$$
\begin{array}{lll}
D^{~ d)} & 1.82 \\
D^{2} & \text { e) } & 1.35
\end{array}
$$

Question 38.
Calculate the relative rate of diffusion of O_{2} compared to O_{3}. (Atomic weight: $\mathrm{O}=16.00$).

C a) 1.30
E b) 0.672
c) $\mathbf{0 . 8 2 0}$

L
d) 1.49
[
e) 1.22

Question 39.
A mixture of 0.50 mole $\mathrm{H}_{\mathbf{2}}$ and $\mathbf{0 . 5 0}$ mole of $\mathrm{SO}_{\mathbf{2}}$ is introduced into a $\mathbf{1 0 . 0} \mathrm{L}$ container at $25^{\circ} \mathrm{C}$. The container has pinhole leak. After a period of time: (Atomic weights: $\mathrm{H}=1.008, \mathrm{~S}=32.06, \mathrm{O}=16.00$).

E
a) the partial pressure of H_{2} exceeds that of SO_{2} in the remaining gas
b) the partial pressure of SO_{2} exceeds that of H_{2} in the remaining gas
c) the partial pressures of the two gases remain equal throughout this time

Question 40.

How many milliliters of \mathbf{N}_{2} at STP would be produced from $0.0013 \mathrm{~g} \mathrm{of}_{\mathbf{H}}^{\mathbf{2}}$ according to the following equation?
(Atomic weights: $\mathrm{N}=14.01, \mathrm{O}=16.00, \mathrm{H}=1.008$).

$$
2 \mathrm{NO}(\mathrm{~g})+2 \mathrm{H}_{2}(\mathrm{~g}) \rightarrow 2 \mathrm{H}_{2} \mathrm{O}(\mathrm{~g})+\mathrm{N}_{2}(\mathrm{~g})
$$

E
a) 1.8

E
b) 3.6

E
c) 15
\qquad

$$
\mathrm{E}_{\text {d) }} 30
$$

$$
D_{\text {e) }} 7.2
$$

Question 41.
Sodium reacts with water according to the following reaction. How many milliter of hydrogen at STP would be produced by the reaction of 1.20 grams of sodium? (Atomic weights: $\mathrm{Na}=22.99, \mathrm{H}=1.008, \mathrm{O}=16.00$).
$2 \mathrm{Na}(\mathrm{s})+2 \mathrm{H}_{2} \mathrm{O}(\mathrm{l}) 82 \mathrm{NaOH}(\mathrm{aq})+\mathrm{H}_{2}(\mathrm{~g})$
E
a) 260
b) 342
c) 292

E
d) 445
e) 585

Question 42.
Pure tungsten can be prepared by the following reaction. What volume (L) of $\mathbf{H}_{\mathbf{2}}$ at 0.980 atm and $20^{\circ} \mathrm{C}$ is required to react with 25.2 g of WO_{3} ? (Atomic weights: $\mathrm{W}=183.85, \mathrm{H}=1.008, \mathrm{O}=16.00$).

$$
3 \mathrm{H}_{2}(\mathrm{~g})+\mathrm{WO}_{3}(\mathrm{~s}) 8 \mathrm{~W}(\mathrm{~s})+3 \mathrm{H}_{2} \mathrm{O}(\mathrm{~g})
$$

a) 2.67
b) $\mathbf{7 . 2 0}$
[
c) 4.50
d) 9.00
[
e) $\mathbf{8 . 0 0}$

Question 43.
A 1.14 g sample of impure aluminum carbide reacts with water to give 463 mL of CH_{4} collected by water displacement at $20^{\circ} \mathrm{C}$ and 745 mm Hg . The vapor pressure of water is 17.5 mm Hg . What is the $\% \mathrm{Al}_{4} \mathrm{C}_{3}$?
(Atomic weights: $\mathrm{Al}=26.98, \mathrm{C}=12.01, \mathrm{H}=1.008, \mathrm{O}=16.00$).

$$
\mathrm{Al}_{4} \mathrm{C}_{3}(\mathrm{~s})+\mathrm{H}_{2} \mathrm{O}(\mathrm{l}) \rightarrow 3 \mathrm{CH}_{4}(\mathrm{~g})+4 \mathrm{Al}(\mathrm{OH})_{3}(\mathrm{~s})
$$

\qquad
a) $\mathbf{8 0 . 2}$
b) 77.6
c) $\mathbf{7 2 . 1}$
d) 82.4

E e) 74.2
Question 44.
A 3.00 g sample of a mixture contains copper and zinc. Zinc reacts with HCl but copper does not. What is the $\% \mathbf{Z n}$ if 927 mL of hydrogen gas is collected by displacement of water at 740 mm Hg and $20^{\circ} \mathrm{C}$. The vapor pressure of water is 17.5 mm Hg .
(Atomic weights: $\mathrm{Zn}=65.39, \mathrm{H}=1.008, \mathrm{Cl}=35.45, \mathrm{O}=16.00$).

$$
\mathrm{Zn}(\mathrm{~s})+2 \mathrm{HCl}(\mathrm{aq}) \rightarrow \mathrm{ZnCl}_{2}(\mathrm{aq})+\mathrm{H}_{2}(\mathrm{~g})
$$

a) 82.8
b) 79.8
c) 85.3
d) 81.7

E
e) 77.1

Question 45.
A 0.815 g sample of a mixture contains copper and aluminum. Aluminum reacts with HCl but copper does not. What is the $\% \mathrm{Al}$ if 927 mL of hydrogen gas is collected by displacement of water at 740 mm Hg and $20^{\circ} \mathrm{C}$. The vapor pressure of water is 17.5 mm Hg .
(Atomic weights: $\mathrm{Al}=26.98, \mathrm{H}=1.008, \mathrm{Cl}=35.45, \mathrm{O}=16.00$).

$$
2 \mathrm{Al}(\mathrm{~s})+6 \mathrm{HCl}(\mathrm{aq}) \longrightarrow 2 \mathrm{AlCl}_{3}(\mathrm{aq})+3 \mathrm{H}_{2}
$$

a) 77.1
b) $\mathbf{8 0 . 8}$
c) 81.7
\qquad

D d) 85.3
E e) 79.2
Question 47.
The average velocity of He at $100^{\circ} \mathrm{K}$ will be \qquad times that of the average velocity of O_{2} at $400^{\circ} \mathrm{K}$.
(Atomic weights: $\mathrm{He}=4.00, \mathrm{O}=16.00$).

$$
\begin{aligned}
& \mathrm{E}_{\text {a) }}(2)-1 / 2 \\
& \mathrm{E}_{\text {b) }} \\
& \mathrm{E}_{\text {c) }} \\
& \hline \mathrm{E}_{\text {d) }} \\
& \mathrm{E}_{\text {de }} \\
& \hline
\end{aligned}
$$

Question 48.

The average velocity of H_{2} at $250^{\circ} \mathrm{K}$ will be \qquad the average velocity of He at $250^{\circ} \mathrm{K}$.
(Atomic weights: $\mathrm{He}=4.00, \mathrm{H}=1.008$).
C a) larger than
$\mathrm{C}_{\text {b) }}$ smaller than
$\mathrm{C}_{\text {c) }}$ the same as

Question 49.
Which of the following is the ordering of average velocities of $\mathrm{He}, \mathrm{N}_{\mathbf{2}}$ and $\mathrm{H}_{\mathbf{2}} \mathrm{O}$ at $600^{\circ} \mathrm{K}$?
(Atomic weights: $\mathrm{He}=4.00, \mathrm{H}=1.008, \mathrm{O}=16.00, \mathrm{~N}=14.01$).
E
a) $\mathrm{H}_{2} \mathrm{O}>\mathrm{N}_{2}>\mathrm{He}$
L
b) $\mathrm{He}>\mathrm{H}_{2} \mathrm{O}>\mathrm{N}_{2}$
[
c) $\mathrm{He}=\mathrm{N}_{2}=\mathrm{H}_{2} \mathrm{O}$
E
d) $\mathrm{N}_{2}>\mathrm{H}_{2} \mathrm{O}>\mathrm{He}$
[
e) $\mathrm{He}>\mathrm{N}_{2}>\mathrm{H}_{2} \mathrm{O}$

