
 
Chapter 5 

The Second Law Of Thermodynamics 
 

 
• Thermodynamics main concern is in the transformation of energy. 
 
• 1-st law states naturally conservation of energy in ordinary process. 

However, does not say any thing about the “spontaneity”. (The spontaneous 
direction of the process). 

 
• Experience indicates that the direction of process is not arbitrary but 

restricted. (Ex. Hot and cold object). 
 

• In addition, the difference between heat and work provide some insight 
into the 2-nd law. 
 
Work: Easily transferred into other forms of energy. Such conversation 
can be made to approach 100% efficiency by elimination of friction. 
(reversible). 
 
Heat: Can’t be as efficiently converted to work or into mechanical or 
electrical energy. Such conversation efficiency does not exceed 40%. 

 
 
5.1 Statements Of The Second Law  
 

1) It is impossible by a cyclic process to convert the heat absorbed by a   
         system completely into work. 
2) No process is possible which consists solely in the transfer of heat from  
         one temperature level to a higher one. 



 
5.2 Heat Engines 
 

• It is a device or machine that produce work from heat in a cyclic process. 

 
Thus from first law, 
                                        ⎜W⎟ = ⎜QH⎟ – ⎜QC⎟                                                 (5.1) 

 
• The efficiency of the heat engine is defined as: The ratio between the work   
     output and the heat input. 
 
     η = ⎜W⎟ / ⎜QH⎟ = ⎜QH⎟ - ⎜QC⎟ / ⎜QH⎟ 
   Or 
     η = 1 - ⎜QC⎟ / ⎜QH⎟                                                                                     (5.2) 
 
   For η to be 100%, ⎜QC⎟  must be zero. 
   However, no engine can be built for which this is true. {Impossible} 
 
• Maximum thermal efficiency is achieved if the heat engine operates 

completely in a reversible manner. Such ideal engine is special and is 
called the Carnot engine. 
(Reversible engine ≡ The difference in the temperatures of each cycle is 
very small). Thus, any reversible engine operation between two heat 
reservoirs is a carnot engine.  

 
• Carnot Observation: For a reversible heat engine, the efficiency 

depends only on the temperature levels, TH and TC.  
 
• Carnot Cycle: Is a heat engine but the working fluid is assumed to be 

IDEAL.  



 
5.3 Thermodynamic Temperature Scale 
 

 
 

• Four reversible steps: 
1) a→ b  Adiabatic compression, until the temperature rises from TC to TH. 
2) b→ c  Isothermal expansion to point c during which it absorbs a quantity 

of heat ⎜QH⎟. 
3) c→ d  Adiabatic expansion until the temperature decrease to TC.  
4) d→ a  Isothermal compression to the initial state with rejection of heat 

⎜QC⎟. 
 

• For any reversible process, using an ideal gas as the system in a closed system, 
the first law: 

                                         dU = dQ + dW 
             CV dT = dQ + PdV 
 Solving for Q and W of the above four steps gives: 
    ⎜QH⎟ / ⎜QC⎟ = TH / TC                                                     (5.7) 

  
 And since,    η = 1 - ⎜QC⎟ / ⎜QH⎟ 
 Then,    η = 1 – TC / TH                                                     (5.8)  
                    5.7 & 5.8        Carnot’s Equations 
 
 For η = 1 TC has to be zero  OR  TH to be infinite. Which can’t be realized on earth. 
        
   Cold reservoirs naturally available on earth:  atmosphere, sea water & rivers TC ≅300K.  
   Hot reservoirs: furnaces fueled by fossil fuel or nuclear reactors TH ≅600K. 
   Then, η = 1- 300/600 = 0.5, approximate limit for thermal efficiency of Carnot engines. 
   Actual heat engines are irreversible and η rarely exceeds 0.35. 



5.4 Entropy 
 

• Write equation 5.7 as, 
⎜QH⎟ / TH = ⎜QC⎟ / TC 

Consider the signs for heat, 
QH / TH = - QC / TC 

Then, 
QH / TH + QC / TC = 0                                        (5.9) 

 So, their exist a property of the system (Q/ T) for which the sum of its change is  
            zero for any complete reversible cycle. 
 

                          ∫ dQrev / T = 0                                                     (5.10) 
Clausius (1850) had introduced this property and called it entropy (S). 

 
     dSt =  dQrev / T                                       (5.11) 
 Where St is the total entropy of the system. Alternatively, 
 
                                                                      (5.12)       
                                                                      

dQrev =  T dSt 

• The change in entropy of any system undergoing a finite reversible process: 
 

                                           ΔSt = ∫ dQrev / T                                                                 (5.13) 
• When a system undergoes an irreversible process from an equilibrium state to 

another, ΔSt is still evaluated by application of equation 5.13 to an arbitrarily 
chosen reversible process that accomplishes the same change of state. 

 
 

• Entropy is useful because it is a state function. It is based on the 2-nd law. 
 

  



5.5 Entropy Changes Of An Ideal Gas 
 

  1-st law for one mole or unit mass of fluid, 
                                                                                 dU = dQ + dW 
 For a reversible process, 

         dU = dQrev - PdV 
 Differentiation of enthalpy equation,           H  = U + PV,   yields: 
 
                                                           dH = dU + PdV + VdP 
 Substitute for dU, 
                                                                                dH = dQrev - PdV + PdV + VdP    
 Or                                                                dQrev   = dH - VdP    
  

Now for ideal gas, dH = CP
ig

 dT     &  V = RT / P 
  

Substitute back,           dQrev   = CP
ig

 dT – RT / P dP          Or 
                                    dQrev / T  = CP

ig
 dT / T – R / P dP 

            From 5.11, 
                                                dS = CP

ig
 dT / T – R dP/P 

 Integrate from initial state (P1,T1) to final state (P2,T2) 
  

                                        
    (5.14)                            

 
ΔS =  CP  dT / T – R ln P2/P1 ∫

1T

2T
ig

 
            Based on equation 4.4, CP

ig
 / R= A + BT + C T2 + DT-2 

            Integrate 5.14, and define the mean heat capacity (CP
ig

s
), 

                            CP
ig

s
 =  (CP

ig
 dT / T) / ln (T2/T1)                                   (5.16) ∫

2

1

T

T

            Substitute into 4.4, 
                                      CP

ig

s
/ R = A + B Tlm +TH Tlm [ C + D/(T1T2)2]                      (5.17) 

            Where,  
  TH  (arithmetic mean temp.) = T1 + T2 / 2 
  Tlm ( logarithmic mean temp.) = T2 - T1 / ln (T2 / T1 ) 
 
 Solving for integral in 5.16, 

       (CP
ig

 dT / T) = CP
ig

s
 ln T2 / T1 ∫

2

1

T

T

 Equation 5.14 becomes, 
                                                                                   
                                                            (5.18) ΔS = CP

ig

s
 ln T2 / T1 – R ln P2/P1 

Example 5.3 



5.6 Mathematical Statement Of The Second Law 

e at TH and another at lower temperature TC. 
ΔSH = - Q / TH 

 Then,  

C TH ) 
Since  TH > TC   ⇒      ΔStot = + ve   For this irreversible process

 
   Consider two heat reservoirs on
   
 And 
                                  ΔSC =  Q / TC 

                                         
          ΔStot = ΔSH + ΔSC = Q / Tc - Q / TH = Q (1/ TC  - 1/ TH ) 
                                                                    = Q (TH – TC / T

 . 

 To make the process reversible
 

, reduce TH as close as possible to TC.    
⇒     ΔStot = 0 

cess  ΔStot>0 and as the process becomes   
 

                                                                                                             (5.19)                                                 
           

itive, the limiting value of zero being reached only by 
 reversible process.     

xample 5.4.

 Conclusion:  
 For irreversible heat transfer pro
            reversible ΔStot approach zero.
                                                            
              

  
Every process proceeds in such direction that the total entropy change 
associated with it is pos

ΔStot  ≥ 0 

a
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HW#1 
 

Just as thermo professor was hurrying into the classroom building, a big 20 kg bag of 
sand smashed to the ground behind him, just missing him. He looked up and saw that it 
fell (or dropped) 50 m from the roof deck of the building.  His first thoughts were: 

a) What was ΔS of the bag of sand for this event? 
b) What was ΔS of the surroundings? 
c) What was ΔStotal for this process? 

Please answer the above questions. 
Additional information: Although frictional heat may have been generated when the 
bag hit the ground, this heat is lost to the surroundings as the bag returned to the original 
temperature of 7

o
C.   

                              


