Chapter 4 Heat Effects

Heat Effects:

- *Sensible Heat*: When the transfer of heat produces a change in temperature.
- *Latent Heat*: When a phase change takes place with out a change in temperature.
- Other heat effects includes heat accompany <u>chemical reactions</u>, and heats associated with <u>formation or separation of solutions</u> and heat effects of <u>mixing process</u>.

4.1 Sensible Heat Effects

Molar or specific enthalpy, H, H = H(T,P)

Then, $dH = (\delta H/\delta T)_P dT + (\delta H/\delta p)_T dP$ = = = $C_p Eq'n(2.20)$ Zero, under the following conditions: 1- The change occurs @ constant pressure, dP = 0 Or 2- The enthalpy of substance is indep. of pressure. (exactly for ideal gas, and approximately for low press. gases.)

Then, $dH = C_p dT$ and $\Delta H = \int_{T_1}^{T_2} C_p dT$ (4.2) Since $Q = \Delta H$ Rev., Const. Press., nonflow process & st. st. process. Then $Q = \Delta H = \int_{T_1}^{T_2} C_p dT$ (4.3)

Similarly, U = U(T,P)

$$\Delta U = \int_{T_1}^{T_2} C_v dT$$
(4.1)
Since Q = ΔU Rev., Const. Vol., nonflow process & st. st. process.
Then Q = $\Delta U = \int_{T_1}^{T_2} C_v dT$

• Heat Capacities of Gases

- For gases it's the ideal gas heat capacity (rather than the actual) that is used in evaluation of the thermodynamic properties such as U and H.
- <u>Ideal gas</u> properties are used because such properties can be evaluated by two steps:
 - A. Calculation of ideal gas values from ideal heat capacities.
 - B. From PVT data of the difference between real gas and ideal gas values.
- The ideal gas heat capacities are different for different gases and <u>function of</u> <u>Temp.</u> but indep. of Pressure.

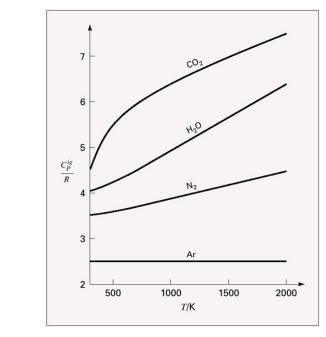


Figure 4.1: Ideal-gas heat capacities of argon, nitrogen, water, and carbon dioxide.

- Can be given an experimental equations: $C_{P}^{ig} = A + BT + CT^{2} + DT^{-2}$ <u>Table C-1</u> gives values of these constants.
- C_{P}^{ig}/R is dimensionless.
- For ideal gas, $C_V^{ig}/R = C_P^{ig}/R -1$ (4.5)

• Heat Capacities of Gas mixtures $C_{Pmixture}^{ig} = y_{A}C_{P_{A}}^{ig} + y_{B}C_{P_{B}}^{ig} + y_{C}C_{P_{C}}^{ig}$ Where, y is mole fraction. (4.6)

• Heat Capacities of solids & liquids

 $C_P / R = A + BT + C T^2 + DT^{-2}$ (4.4) <u>*Table C-2, C-3and Perry's hand book*</u>, gives values of these constants. <u>*Read Ex. 4.1 and 4.2*</u>

- Iteration procedure is required to calculate T_2 given T_1 and Q or ΔH .
- Define a mean heat capacity, $C_{P_{H}}$, as

$$\mathbf{C}_{\mathbf{P}_{\mathbf{H}}} = \int_{T_1}^{T_2} \mathbf{C}_p \, \mathrm{d}\mathbf{T} \, / \, \mathbf{T}_2 \text{-} \mathbf{T}_1$$

• Substitute to the above eq'n, $C_P / R = A + BT + C T^2 + DT^{-2}$ and integrate,

•
$$C_{P_{H}} / R = A + BT_{H} + C/3 (4 T_{H}^{2} - T_{1} T_{2}) + D / T_{1} T_{2}$$

<u>a</u>

- Where $T_H = T_1 + T_2 / 2$ The arithmetic mean temperature. • Then, $\int_{T_1}^{T_2} C_p dT = C_{P_H} (T_2 - T_1)$
 - F

and,

Consequently,
$$T_2 = \Delta H / C_{P_H} + T_1$$
 \underline{c}

 $\Delta \mathbf{H} = \mathbf{C}_{\mathbf{P}_{\mathbf{H}}} \left(\mathbf{T}_2 - \mathbf{T}_1 \right) \qquad \mathbf{\underline{b}}$

Solve by iteration:

- Assume value of T₂.
- Subs. in eq'n $\underline{\mathbf{a}}$, then find $C_{P_{H}}$.
- Subs. in eq'n $\underline{\mathbf{c}}$, then find T_2 .
- Recalculate $C_{P_{H}}$, repeat until convergence is achieved for T_2 .

OR, use the book solution using τ

4.2 Latent Heats of Pure Substances

•	Latent heat of	
	Fusion	$S \rightarrow L$
	Vaporization	$L \rightarrow G$
	Sublimation	$S \rightarrow G$

During this process, 2 phases exist.

• Latent heat is function of temp. and related to other system properties by exact thermodynamic equations:

Clapeyron Equation
$$\Delta H = T \Delta V dp^{sat}/dT$$
 (4.11)

Where,

 $\Delta H = Latent heat.$

 $\Delta V = Volume$ change accompanying the phase change.

 $p^{sat} = Vapor pressure.$

When applied for vaporization, $dp^{sat}/dT = Slope \text{ of vapor pressure vs. temp.}$ $\Delta V = V^{sat}_{Vap} - V^{sat}_{Liq}$

- Latent heats may also be measured calorimetrically. Experimental values are available at selected temperatures for many substances.
- Correlations, like Calpeyron, are available but no enough data information at the desired temperature are known.
- For this reasons, approximate methods have been developed to estimate latent heat of vaporization. They are serve one of two purpose:
 - To predict the heat of vaporization at the normal boiling point.
 - To estimate the heat of vaporization at any temperature from that known at another single temperature.

Trouton's rule: Rough estimates of latent heat of vaporization for pure liquids at their normal boiling point.

 $\Delta H_n / R T_n \sim 10$

Experimental values for this ratio are: Ar, 8.0; N₂, 8.7; O₂, 9.1; HCl, 10.4; C₆H₆, 10.5; H₂S, 10.6; and H₂O, 13.1.

✤ <u>Riedel Equation</u>:.

$$\Delta H_n / R T_n = 1.092 (\ln P_c - 1.013) / 0.93 - T_{r_n} \qquad (4.12)$$

Where, T_n = normal boiling pt.

 ΔH_n = molar latent heat of vaporization @ T_n.

 P_c = critical pressure, bar.

 T_{r_n} = reduced temp. @ T_n .

Error < 5%

✤ <u>Watson Equation</u>:

$$\Delta H_2 / \Delta H_1 = (1 - T_{r_2} / 1 - T_{r_1})^{0.38}$$
(4.13)

Simple and accurate.

<u>Read Ex. 4.4</u>

4.3 Standard Heat of Reaction

- Chemical reactions are accompanied by the transfer of heat, by temp. changes or by both.
- Enthalpy changes during reaction

$$\Delta H = \Delta H_p - \Delta H_R$$

Or the heat of reaction, when both reactant and products are under the same T, P.

- Standard states:
 - Liquids and solids: The real pure liquid or solid at 1 bar.
 - Gases: The pure substance in the ideal-gas state at 1 bar (10⁵ Pa). (used to be 1 atm (101,325 Pa)).
- Property values at standard state is denoted by (°). For example heat capacity at standard state is: $Cp^{o} = Cp^{ig}$
- The heat of reaction depends on how the reaction written:

$\frac{1}{2}$ N ₂ + $\frac{3}{2}$ H ₂ \rightarrow NH ₃		$\rightarrow \mathrm{NH}_3$	$\Delta H^{o}_{298} = -46,11 \text{ J}$	
Or				
N_2 +	$3H_2$	\rightarrow 2NH ₃	$\Delta H^{o}_{298} = -92,22 J$ (De	ouble)

4.4 Standard Heat of Formation

• A formation reaction is the reaction, which forms one mole of a single compound from its constituent elements.

For example,

 $C + \frac{1}{2}O_2 + 2H_2 \rightarrow CH_3OH$ The formation reaction of Methanol.

But,

 $H_2O + SO_3 \rightarrow H_2SO_4$ Not formation reaction.

- The standard heat of formation for compounds are tabulated at 298 K (the standard reference temperature). (ΔH_{298}^{o}) . Given at table C.4.
- Heat of formation reactions at different temperatures can be calculated from heat capacity data and the known value of the standard heat of formation at 298 K.
- Standard heat of formation for any elements = 0.
- Chemical equations and standard heat of reaction resulted may added or subtracted to give the standard heat of the required reaction. (Hess's law).

Consider,

$$CO_2(g) + H_2(g) \rightarrow CO(g) + H_2O(g)$$
 @ 25°C

The formation reactions related to this reaction are as follow:

$CO_2(g)$: C (s) + $O_2(g) \rightarrow CO_2$	$\Delta H^{o}_{f298} = -393,509 \text{ J}$
$H_2(g)$: is an element.	$\Delta H^{o}{}_{f298} = 0$
$\operatorname{CO}(g)$: $\operatorname{C}(s) + \frac{1}{2} \operatorname{O}_2(g) \to \operatorname{CO}(g)$	$\Delta H^{o}_{f298} = -110,526 J$
$H_2O(g) : H_2(g) + \frac{1}{2}O_2(g) \rightarrow H_2O(g)$	$\Delta H^{o}_{f298} = -241,818 J$

Rewrite these equations so that their sum gives the desired reaction

$\operatorname{CO}_2(\mathbf{g}) \rightarrow \operatorname{C}(\mathbf{s}) + \operatorname{O}_2(\mathbf{g})$	$\Delta H^{o}_{f298} = +393,509 \text{ J}$
$C(s) + \frac{1}{2}O_2(g) \rightarrow CO(g)$	$\Delta H^{o}_{f298} = -110,526 J$
$\mathrm{H}_{2}\left(\mathrm{g}\right)+\frac{1}{2}\mathrm{O}_{2}\left(\mathrm{g}\right)\rightarrow\mathrm{H}_{2}\mathrm{O}\left(\mathrm{g}\right)$	$\Delta H^{o}_{f 298} = -241,818 \text{ J}$
$\operatorname{CO}_{2}(g) + \operatorname{H}_{2}(g) \rightarrow \operatorname{CO}(g) + \operatorname{H}_{2}\operatorname{O}(g)$	$\Delta H^{o}_{f 298} = 41,166 J$

• Standard heat of formation depend on the compound state (g, L, ...).

 $H_2(g) + \frac{1}{2}O_2(g) \rightarrow H_2O(g)$ $\Delta H^o_{f\,298} = -241,818 \text{ J}$

However, for

 $H_2(g) + \frac{1}{2}O_2(g) \rightarrow H_2O(L)$ $\Delta H^o_{f\,298} = -285,830 \text{ J}$

The difference (44,012 J) is approximately the heat of vaporization of $H_2O @ 25^{\circ}C$.

Read Example 4.5

4.5 Standard Heat of Combustion

- A combustion reaction is defined as a reaction between an element or compound and oxygen to form specified combustion products.
- Many standard heat of formation cam be determined through combustion reactions.

Consider the formation of n-butane

 $4C(s) + 5H_2(g) \rightarrow C_4H_{10}(g)$ This reaction does not proceed as indicated above. So, we can't directly measure its heat of formation. However consider the combustion reactions:

$4C(s) + 5H_2(g) \rightarrow C_4H_{10}(g)$	$\Delta H^{o}{}_{298} = -125,790 \text{ J}$
$\begin{array}{l} 5H_{2}\left(g\right)+5/2O_{2}\left(g\right)\rightarrow5H_{2}O\left(L\right)\\ 4\ CO_{2}\left(g\right)+5H_{2}O\left(L\right)\rightarrow C_{4}H_{10}\left(g\right)+13/2O_{2}\left(g\right)\end{array}$	$\Delta H^{o}_{298} = (5)(-285,830) J$ $\Delta H^{o}_{298} = (4)(2,877,396) J$
$4C(s) + 4O_2(g) \rightarrow 4CO_2(g)$	$\Delta H^{o}_{298} = (4)(-393,509) J$

The result is standard heat of formation of n-butane listed in table C.4.

4.6 Temperature Dependence of ΔH°

• Standard heat of reaction from standard heat of formation at 298 K can be calculated directly:

$$\Delta H^{o} = \sum v_{i} \Delta H^{o}{}_{fi} \tag{4.15}$$

For example, $4\text{HCl}(g) + O_2(g) \rightarrow 2\text{H}_2O(g) + 2\text{Cl}_2(g)$

$$\Delta H^{o} = 2 \Delta H^{o}{}_{f_{\text{H2O}}} - 4 \Delta H^{o}{}_{f_{\text{HCl}}}$$

@ 298 K from table C.4

$$\Delta H^{o} = 2(-241,818) - 4(-92,307)$$

= - 114,408 J

• If reaction occurs at temperature other than 298 K,

$$d \Delta H^{o} = \Delta C_{p}^{o} dT$$
(4.17)

Integrate between 298K and T

$$\Delta H^{o} = \Delta H^{o}_{298} + R \int_{298.15}^{T} \Delta C_{p}^{o} / R \, dT$$

$$\Delta H^{o} = \Delta H^{o}_{298} + \Delta C_{p}^{o}_{H} (T-298.15)$$
(4.18)

Then,

Where $\Delta C_{p}^{o}_{H}$ can be evaluated similar to $C_{p}^{o}_{H}$ (mean heat capacity) as:

$$\Delta C_{P_{H}^{o}} / R = \Delta A + \Delta B T_{H} + \Delta C/3 (4 T_{H}^{2} - T_{1} T_{2}) + \Delta D / T_{1} T_{2}$$

Where $\Delta A = \sum v_I A_i$ and so on

Read Example 4.6.

4.7 Heat Effects Of Industrial Reactions

- Industrial reactions are rarely carried out under standard state conditions.
 - Reactants may not present in stoichiometric ratios.
 - Reaction may not go to completion.
 - Final temperature may differ from the initial temperature.
 - Inert species may be present.
 - Several reactions may occur simultaneously.
- Calculations of the heat effects of actual reactions are based on theoretical flame temperature (TFT) calculation.
- TFT: is useful to predict the highest achievable temperature, which is useful to select the material type. Usually highest temperature occurs at adiabatic process.

Example 4.7

Read Examples 4.8 and 4.9