VECTORS:

To define a vector write the vector in the form $a = [a_1, a_2, a_3]$ and then click

Sum of vectors:

Example:
$$a = [a_1, a_2, a_3]$$
 press $b = [b_1, b_2, b_3]$ click , then

$$b = [b_1, b_2, b_3]$$
 click , t

write a + b and click

Ex1:

- 1- define the vectors a = [6, 2, 3], b = [-1, 5, 2]
- 2- find a + b

Dot product of vectors:

To find dot product (scalar product) write ab and then click

Ex2:

for a and b defined in Ex 1 find $a \cdot b$

Cross product of vectors:

To find cross product : write $a \times b$ and then click

Ex 3:

Find the cross product for : u = [1, 2, 0], v = [0, 3, 1] then verify that it is orthogonal to both uand v.

Length of a vector:

To find the length of a vector : define the vector then write ||a|| and then click

Ex 4:

find the length of the vector u and then find the unit vector that has the same direction of u.

Angle between two vectors:

To find the angle between two vectors:

$$A \cdot B = ||A|| ||B|| \cos \theta$$

where θ is the angle between the vectors A and B, you can use the dot product to find the angle between two vectors.

Example Define
$$A = (1,2,-3)$$
 and $B = (-2,1,2)$ and solve the equation $\cos \theta = \frac{A \cdot B}{\|A\| \|B\|}$, to get

Solution is:
$$\left\{\theta = \pi - \arccos\left(\frac{1}{7}\sqrt{14}\right)\right\}$$

Apply Evaluate Numerically to get $\theta = 2.1347$.

Ex 5:

Find the angle between the two vectors and determine whether they are orthognal:

1-
$$a = [-5, 3, 7]$$
, $b = [6, -8, 2]$
2- $u = [-1, 2, 5]$, $v = [3, 4, -1]$

The volume of the parallelepiped spanned by three vectors A, B, and C

$$V = |A \cdot (B \times C)|$$
.

Example:

find the volume of the parallelepiped spanned by [1, 1, 0], [1, 0, 1], and [0, 1, 1].

How to plot Quadric surfaces:

To obtain an implicit plot of an equation involving three variables

- 1. Enter the equation in your document.
- 2. From the Plot 3D submenu, choose Implicit.

Ex 6:

Sketch and define then determine the axis and find traces of the following surfaces

$$1 - \frac{x^2}{16} - \frac{y^2}{9} + z^2 = -1$$

$$2 - \frac{x^2}{25} + \frac{y^2}{9} - \frac{z^2}{16} = 1$$

$$3 - z = x^2 + \frac{y^2}{2}$$

4-
$$16x^2 + 9y^2 + 16z^2 - 32x - 36y + 36 = 0$$

5- $3z = -y^2 + x^2$
6- $z^2 + x^2 - y^2 = 0$

5-
$$3z = -y^2 + x^2$$

6-
$$z^2 + x^2 - y^2 = 0$$

Vector functions and space curves

To define a vector function : write the vector function in the form r(t) = [f(t), g(t), h(t)]

and then click

to find derivative of a vector function : write $\frac{d}{dt} r(t)$ and click

to find integral of a vector function : write $\int_{a}^{b} r(t) dt$ and click

to plot a vector function:

1. define the vector function r(t)

. From the Plot3D submenue, choose rectangular

Ex 7:

A) If
$$r(t) = [1 + t^2, t \exp(-t), \frac{\sin t}{t}]$$
 B) $r(t) = [t, t^2, t^3]$ C) $r(t) = [t - \frac{3}{2} \sin t, 1 - \frac{3}{2} \cos t, t]$ D) $r(t) = [\cos t, \sin t, \ln t]$ 1. find $\int_0^1 r(t) dt$

- **2**. find $\frac{d}{dt}r(t)$
- **3**. sketch r(t)

function of several variables:

To define afunction of several variables : write the function f(x, y), then click

to find the derivative of the function f(x, y): write $\frac{\partial}{\partial y} f(x, y)$ and click

to find the double integral of the function f(x,y): write $\int_{a}^{b} \int_{c}^{d} f(x,y) dy dx$ and click

Ex 8:

For
$$f = \frac{x^2 - y^2}{x^2 + y^2}$$
 find

- 1. $\frac{\partial^2 f}{\partial x^2}$ 2. $\frac{\partial^2 f}{\partial y^2}$ 3. $\iint_{0.1}^{1.2} f dy dx$

To plot a defined function f of two variables

- **1.** Select the function name f or select the expression f(x, y).
- 2. From the Plot 3D submenu, choose Rectangular.

Ex 9:

Sketch the function A)
$$f(x, y) = \frac{\sin x \sin y}{xy}$$
 B) $f(x, y) = \frac{-3y}{x^2 + y^2 + 1}$

Gradiant of a function of several variables:

To evaluate the gradiant of a function of several variables: define the function f, then write ∇f and click

To plot a gradient field

- **1**. Type an expression f(x, y).
- 2. Leave the insertion point in the expression, and from the Plot 2D submenu, choose

Gradient.

Ex 10:

If A) $f = xy^2z^3$, B) $h(x, y) = xy\sin xy$, find the gradiant of the function and plot its graph.

Vector field

To find the divergent of a vector field :define the vector field ,then write $\nabla \cdot F$ and click

to find the curl of a vector field : define the vector field ,then write $\nabla \times F$ and click

To plot a two-dimensional vector field

- **1**. Type a pair of two-variable expressions
- 2. Leave the insertion point in the vector, and from the Plot 2D submenu, choose Vector Field

Ex 11:

For A)
$$F = \left(\frac{1}{\sqrt{(1+|y^2-t^2|^2)}}, \frac{y^2-t^2}{\sqrt{(1+|y^2-t^2|^2)}}\right)$$

$$F = \left[\ln(1+y^2), \ln(1+x^2)\right], \text{ plot } F$$

To plot a three-dimensional vector field

- **1**. Type three three-variable expressions, representing the *x*-, *y*-, and *z*-components of a vector field, into a vector.
- **2**. Leave the insertion point in the vector.
- 3. From the Plot 3D submenu, choose Vector Field.

To change the view

- 1. Click the frame until a small box appears in the upper-right corner of the frame.
- **2**. With the left mouse button held down, rotate the plot.

Ex 12:

For A)
$$F = [xz, 2xz, zy]$$

For A)
$$F = [xz, 2xz, zy]$$
 B) $F = \left[\frac{y}{z}, -\frac{x}{z}, \frac{z}{4}\right]$ C) $F = [yz, xz, xy]$ find

$$C)F = [yz, xz, xy]$$

- **1**. ∇•*F*
- **2**. $\nabla \times F$
- **3**. sketch *F*.