
Operator reaction field theory in quantum optics: a study of one two-level atom in a broad-

band squeezed vacuum without rotating wave approximation

This article has been downloaded from IOPscience. Please scroll down to see the full text article.

2000 J. Opt. B: Quantum Semiclass. Opt. 2 R35

(http://iopscience.iop.org/1464-4266/2/4/202)

Download details:

IP Address: 84.235.73.21

The article was downloaded on 25/10/2010 at 17:30

Please note that terms and conditions apply.

View the table of contents for this issue, or go to the journal homepage for more

Home Search Collections Journals About Contact us My IOPscience

http://iopscience.iop.org/page/terms
http://iopscience.iop.org/1464-4266/2/4
http://iopscience.iop.org/1464-4266
http://iopscience.iop.org/
http://iopscience.iop.org/search
http://iopscience.iop.org/collections
http://iopscience.iop.org/journals
http://iopscience.iop.org/page/aboutioppublishing
http://iopscience.iop.org/contact
http://iopscience.iop.org/myiopscience


J. Opt. B: Quantum Semiclass. Opt. 2 (2000) R35–R46. Printed in the UK PII: S1464-4266(00)08784-X

REVIEW ARTICLE

Operator reaction field theory in
quantum optics: a study of one
two-level atom in a broad-band
squeezed vacuum without rotating
wave approximation

S S Hassan†, H A Batarfi‡ and R K Bullough§

† Ain Shams University, Faculty of Science, Mathematics Department, Cairo, Egypt
‡ King Abdul-Aziz University, Faculty of Science, Mathematics Department (Women’s
Section), PO Box 41101, Jeddah 21521, Saudi Arabia
§ UMIST, Department of Mathematics, PO Box 88, Manchester M60 1QD, UK

Received 19 October 1999, in final form 2 March 2000

Abstract. We review the use of operator reaction field theory in quantum optics by
considering the problem of one atom in an isotropic three-dimensional broad-band squeezed
vacuum. In these terms we give a quantum electrodynamical analysis of this system exact up
to all contributions of order one in the ratio γω−1

0 , the ratio of the A-coefficient to the atomic
resonance frequency. These terms include all of the counter-rotating terms at this order. At
zero order, namely in the usual rotating wave approximation, we find the usual Einstein rate
equation while we confirm that the fluorescence spectrum consists of two Lorentzian peaks.
However, at order one we find an additional oscillating term in the rate equation and
additional resonant dispersive terms correct for each of the two Lorentzian peaks in the
fluorescence spectrum. Similar results are expected for broad-band correlated squeezed
vacua of arbitrary, rather than isotropic, geometry.

Keywords: Operator self-fields, QED, screening of the A-coefficient, rotating-wave
approximation, Einstein rate equation, squeezed vacuum, fluorescence spectrum

1. Introduction

The two-level atom is the simplest possible model of any
real atom. It has a distinguished history in theoretical
laser physics (see, e.g., [1]) and still more so generally
in theoretical quantum optics (see, e.g., [2–4] as particular
references). Even the strictly mathematical representations
of the model as a quantum mechanical spin- 1

2 model have
significance. Thus in [5] one of us mentioned a number
of different representations of this model (e.g. as the two-
dimensional representation of the su(2) Lie algebra (equals
spin- 1

2 ), as a restricted two-boson Schwinger representation,
a one-fermion representation, as a restricted one-boson
representation, etc) which could all be summarized as a
one-fermion representation of the model. Coupled to the
quantized electromagnetic field this means [5] a strictly
nonlinear fermion–boson coupling between the atom and the
field. This nonlinearity is one aspect of the importance of the
model in theoretical quantum optics.

Indeed, particularly interesting physics emerges as soon
as the single two-level atom is coupled to any quantized e.m.

radiation field, either vacuum or other field. In this paper we
offer a brief review of the topical problem of a single two-level
atom coupled to a broad-band isotropic squeezed vacuum
field. The effects of squeezed vacua with other geometries
can easily be extracted from the theory. Such a review may
be particularly appropriate for the newly revised form of this
journal, J. Opt. B: Quantum Semiclass. Opt. As our title
suggests we also use this article to review very briefly some
of the applications of operator reaction field theory (ORFT)
in theoretical quantum optics. Early references to ORFT
are [6–8] for example. A recent application of ORFT is given
in [9], and this is particularly relevant to this review since
it concerns two-level atoms in squeezed vacua. However,
compared with the previous work using the ORFT for two-
level atoms in squeezed vacua, and especially that in [9]
where Na � 1 atoms are considered, a new feature in this
review of one atom is that we shall work here consistently
to order one in the ratio γω−1

o and not order zero: γ is the
A-coefficient of the two-level atom and ω0 is its radiatively
unshifted transition frequency. This order one in γω−1

0
makes the first correction to the usual analysis, made for
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example in [9], in the so-called rotating wave approximation
(RWA). But even at order zero, namely within the RWA
itself, the effects of the quantized radiation field, which
include radiative level shifts of each of the two levels of
the atomic model induced by the ordinary e.m. vacuum of
no photons, are further complicated by the photons of the
squeezed vacuum. So the ‘simple’ single two-level atom,
coupled into the squeezed vacuum, has already become quite
complicated.

Still, by working at order one in γω−1
0 we shall find that

we can extract two wholly new results, not reported before
to our knowledge. One of these is a steady oscillation in
the steady state atomic inversion induced by the broad-band
squeezed vacuum; the other is additional resonant terms in
the fluorescence spectrum induced by this squeezed vacuum.
Both of these results derive from the counter-rotating terms
correcting the RWA.

As noted, we shall deliberately work the whole analysis
in terms of ORFT: this is particularly convenient for this
(and many other) problem in theoretical quantum optics. By
making this analysis in all its necessary detail for the single
two-level atom in this paper we thus provide a review of at
least some important general aspects of the application of
ORFT in quantum optics.

Two very early papers on ORFT are [6, 7], already
mentioned, while earlier reviews appeared in [8]: a recent
book [8] also reviews the interplay between the radiation
reaction and vacuum fluctuations and the interpretation of
various operator ordering (normal, anti-normal, symmetric)
in the case of the normal vacuum (see, in particular,
[10]). ORFT is a powerful technique for introducing in
a natural (and rather physical) way both the Einstein A-
coefficient and the radiative level shifts for the low-energy
quantum electrodynamics of one or more atoms interacting
with the quantized e.m. field. Thus for the many-body
problem of linear dielectrics consisting of Na two-level
(or Na many-level) atoms, for example (Na is here very
large ∼1023), we have already constructed [11–13] self-
consistently, the refractive index theory of such a dielectric
by adding to the interaction field between pairs of atoms
the self-field. This self-field describes radiation reaction,
an idea which goes back to Lorentz [14]. In the third
edition of his book P A M Dirac [15] gives a relativistic
theory of radiation reaction but discards this in the fourth
edition [16] since he no longer considers point electrons
analogous to classical electrons there. In [17], pp 581–
94, Jackson explicitly introduces and analyses the classical
Abraham–Lorentz model. This model has the additional
radiative reaction force or self-force 2

3e
2v··/c3 acting on

the electron due to its radiation, where v is the electron
velocity. Since v = x· and x is the position of the
electron, the dipole moment for a bound electron held in
an atom is ex, while the additional field on the electron
is the self-field 2

3ex
···(t)/c3. For x(t) = x0e−iωt for the

oscillating bound electron driven by the applied field E(t) =
E0e−iωt this self-field is 2

3ex(−iω)3/c3, which corresponds
exactly to the 2

3 i(ω/c)3p(r), the convergent part of the
integral, equation (1) below. Moreover, in [11] it is shown
that this expression for the convergent part of integral (1)
changes the polarizabilityα(ω) for a single atom at frequency

ω rad s−1 to γ (ω) = α(ω)/(1 − 2
3 ik3

oα(ω)). With the
expression for α(ω) = (e2/m)

∑
s fs(ω

2
s − ω2)−1 due to

Kramers and Heisenberg referenced in [11], in which fs

is the ‘oscillator strength’ and m the electron mass, one
finds near to a resonance, where ω ≈ ωs for some atomic
resonance frequency ωs , that γ (ω) ≈ (e2/m)fs/[ω2

s −
ω2 − 2

3 iω3
s c

−3(e2/m)fs]. But fs = 2mωs |x0s |2h̄−1 where
ex0s = e〈0|x|s〉 is the dipole matrix element between the
ground atomic state |0〉 and the excited atomic state |s〉 so
that γ (ω) ≈ (e2/m)fs/[ω2

s − ω2 − iωsγ ] and γ is the
Einstein A-coefficient—see below. In this argument the
A-coefficient, deriving from the classical expression (1), is
a classical concept, associated with classical oscillators of
strength fs . However, h̄ is concealed in these fs . These
are pure numbers: fs > 0 satisfy the Thomas–Reiche–
Kuhn sum-rule

∑
s fs = 1 for one ‘optical’ electron in

the atom as is easily proved. Since γ (ω) replaces α(ω) in
the dielectric theory [11–13] it is easy to see that the A-
coefficient in γ (ω) can become ‘screened’ (actually by a
factor of refractive index and more generally by other many-
body terms within that dielectric theory—see below). On
the other hand, the classical radiative level shifts mentioned
below equation (1) become transformed into nonclassical
expressions by making use of the ORFT as is explained briefly
in the second paragraph below equation (1) and then shown
explicitly in section 2.2. Moreover, many-body terms further
correct these radiative shifts, including in these the Lorentz
field shifts, and their generalization [11–13]. In practice,
the self-field in the dielectric theory [11–13] amounts to
assigning a meaning to the mathematical expression

∫
p(r) · F (r, r′;ω)δ(r − r′) dr′. (1)

In this expression a dipole moment density p(r) induced
in an atom at r (in three-dimensional space) radiates at
radial frequency ω through the ‘photon propagator’ or Green
function F (r, r′;ω) back onto itself at r = r′ (we explain
for the record that the tensor Green function F takes the
explicit form F (r, r′;ω)= (∇∇ + k2

0U)r−1 exp(ik0r)where
r = |r − r′|, k0 = ωc−1, U is the unit tensor in dyadic
notation and ∇ is the usual gradient operator (see, e.g.,
[11, pp 254–255])). The meaning we naturally attach to
expression (1), is 2

3 ik3
0p(r), namely the strictly convergent

part of this integral. However, there is also a linearly
divergent part, and potentially still other divergences because
of the dipole approximation [18]: the linear divergence
becomes the ‘classical’ level shift and was known to
Lorentz [14].

In ORFT the same two terms arise (see our equation (12)
below), but now the radiative level shift is softened by normal
ordering to a logarithmic divergence

∫ ωc ω−1 dω, and actual
convergence is gained by formally choosing ωc < ∞ and
equal to the Compton frequency, a prescription first adopted
by Weisskopf [19]. By this prescription the level shift (of
about 1000 MHz) is very much of the right order to match
the subsequently observed Lamb–Retherford radiative level
shift in the 22s level of hydrogen shifted relative to the p-states
(21p and 22p) [20]. In this paper, we shall show by ORFT
how the squeezed vacuum modifies these vacuum radiative
shifts by adding appropriate ‘light shifts’ to them, for the
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squeezed vacuum is an excited state of the ordinary vacuum
(such light shifts induced by ordinary laser fields have come
in to particular prominence recently in the context of laser
cooling [21]).

Notice how in the many-body dielectric theory of [11–
13] the δ-function in equation (1) survives as such throughout
the whole connected many-body analysis. It emerges at the
end [13, equation (7.5)] as the ‘self-correlation’ in the density
fluctuations which determine the total optical scattering
cross-section of the many-atom dielectric (for orientation,
the argument for equation (7.5) in [13] uses the result of
equation (6.9) in [13] which is

∫
u2(r) dr = κT kBT where

κT is the isothermal compressibility of the system, kB is
Boltzmann’s constant and T is the absolute temperature:
u2(r) is the first of the so-called Ursell functions [11, p 268,
equation (4.12b)] and u2(r) = g12(r) + n−1δ(r) − 1 [11,
pp 261, 263]. At last, in this expression [13, equation (7.5)]
we find the δ-function δ(r) describing self-correlation or self-
interaction or radiation reaction! The number n is the mean
number of atoms in unit volume.

This brief excursion into molecular correlation theory
allows us to make a point concerning the ORFT applied
to dielectrics. This is that the ORFT naturally provides a
theory of the screening of the Einstein A-coefficient in a
dielectric [22]†. In the recent papers [23–29], for example,
(as well as the recent papers on this topic referenced in
these papers) it is shown that the effective A-coefficient γ

in a dielectric gains at least a factor of the refractive index
of that dielectric. It is worth commenting on these recent
papers [24–29]. In [24], section 3 evaluates the transverse
Green function which is the convergent part of an integral
like that in equation (1) for the self-field. However, the
refractive index factor n(ω) arises here by using the screened
propagator F̃ we used in [12] rather than the unscreened F

which appears in equation (1). The divergence associated
with the longitudinal Green function of this paper [24] is
already explained, and indeed properly handled, in our [12].
It is important to note that, except for neglect of certain subtle
surface-dependent many-body terms, the use of F̃ rather than
F in [12] is shown to be wholly equivalent to the use of F : in
fact, F̃ derives from F otherwise as a gauge transformation
(see particularly the reference to Mazur (1958) in [11]). Even
so, the ‘subtle surface-dependent terms’ play a specific role in
introducing the factor n(ω) into the scattering cross-section
(and the A-coefficient)—see [30, 31]). The discussion [25]
has also been handled previously by the self-field analysis
(see, for example, chapter 2 of [11] and the later analysis).

The paper by de Vries and Lagendijkin [26] entitled
‘Resonant scattering and spontaneous emission in dielectrics:
microscopic derivation of local field effects’ is also already
comprehensively covered and extended in the papers [11–13]
with [22] and the references to the authors’ work listed
there. In effect [11–13] together solve the whole many-body
problem for the internal field (equally local-field [26]) in
a disordered dielectric, but because the dielectric constant
ε(ω) (called m2(ω) in [11–13]) is expressed in terms of

† Unfortunately the expression 13 lines below equation (1) in [22]
should read n̄κkBT = ∫

[δ(r) + n̄(g2(n) − 1)] d(vol)—the important δ(r)
replacing the ‘1’ appearing there. (Note that the authorship of [10] in [22]
needs correction to that of our [30] below.)

ε(ω), such expressions become formal ‘integral equations’
for ε(ω). Various alternative integral equations of this type
are given in [11–13] as well as a low-density expansion in a
small parameter nα(ω), n the number density of atoms and
α(ω) the atomic polarizability. The problem of the isotropic
crystal lattice considered in the context of [26] was originally
treated in the paper by Bullough and Thompson, referenced
in [11].

Glauber and Lewenstein [27] makes a macroscopic
quantization of a smooth dielectric which leads to a screening
of the A-coefficient which is more compatible with the use
of the screened propagator F̃ as it was introduced in [12]
(see [22,24]) rather than the unscreened propagator F quoted
here below equation (1). Using equation (7.19a) in [12] a
‘best result’ for the dispersion relation is obtained (m3 in
this equation (7.19a) should be corrected to m2). This best
dispersion relation (also requoted as equation (2) in [22]) is
not the Lorentz–Lorenz relation but takes the form(
m2 − 1

4π

) (
2m2 + 1

3m2

)

= n0β +
m2 + 2

3m2
(C + Q) +

4π

3m2
(C + Q)2 + · · ·

where n0 is the number density of atoms, m ≡ m(ω) is
the refractive index and C depends on m and β, and Q

depends on the atomic polarizability α and the multi-body
correlations, while β is an effective polarizability depending
on radiation reaction (self-and other correlations). Evidently
this dispersion relation is actually a complicated many-
body integral equation for m(ω) or for m2(ω) ≡ ε(ω) the
dielectric constant. However, the ‘screened internal field
factor’ 3m2/(2m2 + 1) in this dispersion equation, taken
together with F̃ instead of F , yields the exact result found
in [27]. Evidently the actual situation is once again still more
complicated than that found in [27].

Milonni [28] also considered a macroscopic quantization
of a smooth linear dielectric at frequencies away from
resonances. He investigates local field corrections to the
A-coefficient of Lorentz field type (quoting Dexter and
others, his [16], in this connection) as well as investigating a
‘screened’ local field of [27] above. Note, from [22], that
the effective local field correction on the A-coefficient is
nearer to n[ 1

3 (n
2 +2)]4 rather than the Lorentz field correction

n[ 1
3 (n

2 + 2)]2 obtained by Dexter and others (n= refractive
index, called m(ω) in [27], and is as used in [11–13]).

Fleischhauer and Yelin [29] study radiative atom–atom
interactions in optically dense media in a wholly quantum
framework assuming Gaussian classical statistics for the
interacting field and show, among other results, that the
Lorentz–Lorenz dispersion relation holds for the mean
amplitude of the local field seen by the probe atom (also
see Bowden and Dowling [29]). Unfortunately for any
comparisons the quantum basis to the many-body theoretical
papers [11–13] still remains unpublished (cf [11–13] but
also see [30]) but for two-level atoms at least the linearized
quantum Bloch–Maxwell equations, formally extended to
many atomic levels via the polarizabilities α(ω), yield
the classical many-body theory analysed in [11–13]. The
‘internal field’ theory thus becomes that presented there and
its effects on the A-coefficient are those here summarized
in [22, 24–28] above.
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In the present analysis the A-coefficient for a single two-
level atom at r effectively derives from the (convergent part)
of the self-field 2

3 ik3
0 p(r) coming from equation (1) (as is

already explained above equation (1)). This self-field for
the single two-level atom appears at operator level as the
2
3 i(ωo

c
)3pσ− as it is given in expression (12) for the operator

self-field exhibited below. Of course, the k0 ≡ ω c−1 coming
from equation (1) now goes to actual resonance at ω = ω0

in the ORFT, expression (12) below. However, in the many-
body problem of a real dielectric [11–13] such screening of
the A-coefficient cannot be so simply expressed in terms of
a single factor of the refractive index, nor indeed this factor
with further ‘internal field’ factors as suggested in [23, 29].
The many-body theory shows [11–13] that the situation is
much more complicated. Even so [22] the screening of the
A-coefficient in a linear dielectric is in effect being observed
by experiments measuring the total scattering cross section
of the dielectric, the connecting link being through reaction
field theory†.

Recently [32,33] we have extended such linear refractive
index theory to a nonlinear refractive index theory, and
most recently to a theory of optical bistability in a squeezed
vacuum [34, 35]. In effect the ORFT plays its role,
consistently and naturally, in all of these theories, and very
much as it does for the single atom in this paper.

With these remarks as an indication of the scale in which
the ideas of ORFT can be applied in theoretical quantum
optics we return to the simpler problem of the single two-
level atom in the squeezed vacuum to be addressed in this
paper. The pure, zero-photon, vacuum field provides the
appropriate vacuum level shifts [6–8], but of course there
is no fluorescence spectrum from such a vacuum. For any
observable fluorescence spectrum the natural correspondence
to be drawn between unsqueezed and squeezed situations is
that between an atom in a thermal (i.e. black-body isotropic
and unsqueezed) field with a nonzero mean photon number
n̄ at resonance, and an isotropic squeezed vacuum—which
also has a nonzero mean photon number. We call this mean
number in the isotropic squeezed vacuum the number N

(>0) in this paper—in line with previous work on squeezed
vacua [9].

We remark on this correspondence in this paper noting
that counter-rotating terms correct the (unsqueezed) thermal
field as well as the squeezed vacuum field. In contrast, the
counter-rotating terms which induce the oscillation in r3(∞)

in the squeezed vacuum make no change at all in r3(∞) for
the thermal field and the oscillations in r3(∞) are very much
an effect of the squeezed vacuum.

For historical reference recall (see [6–8, 36–40] and
especially [6, 7, 36]) that in the low-energy quantum
electrodynamical description of vacuum (i.e. ordinary
vacuum) field induced radiative level shifts in atoms one
soon discovers that the RWA is a very bad approximation
and that as much as one half of the total radiative shift in a
two-level atom, and likewise in a real multi-level atom [39],
is due to the counter-rotating terms. Depending on the actual

† To our knowledge the simple particular factor of refractive index on the
scattering cross-section first emerged in the papers [30, 31] while it is also
explained via the screened propagator F̃ of [12] put into equation (1) instead
of F (see references for details).

photon number distributions a similar situation extends to
the light shifts induced by any excited states of the quantized
electromagnetic field with nonzero photon numbers [9, 38].
The squeezed vacuum is just such an excited state of the
quantized e.m. field, and this already suggests that only
by systematically investigating both the rotating and the
counter-rotating terms in the theory will it become possible
to give an adequate description of the properties of a single
atom interacting with a squeezed vacuum.

The radiative level shifts present themselves in the theory

at order γω−1
0 where γ is the A-coefficient (γ = 4π

3
p2

h̄

ω3
0

c3 for
the two-level atom (e.g., [6,7]) and ω0 is the atomic transition
frequency in rad s−1:p is the dipole matrix element for the
transition between the two nondegenerate atomic levels). For
ordinary atomic transitions with large A-coefficients, such
as the D-line transitions of Na, γω−1

0 ≈ 10−6 and is still
small (but the radiative level shifts are still measurable—
[20]); and this situation of smallness is little changed for
high Rydberg transitions where p is relatively very large but
ω0 becomes much smaller [41]. In order to carry through a
consistent investigation of the generalized A-coefficients and
radiative level shifts for a single atom in a squeezed vacuum,
as is intended in this paper, this situation suggests that it
would indeed be helpful to make a systematic development
of the theory, systematic to order γω−1

0 , which includes all
terms which arise at this order. ORFT is ideal for such an
investigation [6–8,36–39] although [9] in particular adopted
the RWA for a comparable investigation of a system of one
or more atoms in a squeezed vacuum. This paper therefore
presents just such a systematic investigation for the single
two-level atom in the broad-band squeezed vacuum. It
extends [9] (for the single atom) by including the counter-
rotating terms, and in the course of the argument we derive
the new results for r3(∞) and for the fluorescence spectrum
already mentioned.

From numerical work (see section 2) we find that the
frequency of the oscillation induced in the steady inversion
is close to 2ω0rad s−1 as expected for counter-rotating term
effects, while the magnitude of the oscillation is indeed
O(γω−1

0 ) and small, of the order of the radiative shifts. Since
we shall work with a single two-level atom throughout, there
arises the question of the effects of the other levels in a real
atom at this order especially if the oscillation in r3(∞) is ever
to be observed experimentally.

For the radiative level shifts from the ordinary vacuum
these effects of many levels are well understood (e.g.,
[8, 39, 42]) and the radiative effects of each of the different
level transitions available (each of those with nonvanishing
dipole matrix elements p) must simply be added. For the
effects of the squeezed vacuum and many levels (already
O(γω−1

0 ) for two levels as noted) the situation is different:
in the first place finite atomic inversion r3(∞) > −1 is a
resonance phenomena; thus by calculating r3(∞) for the
steady inversion for a single two-level atom of resonance
frequency ω0 in the squeezed vacuum one legitimately
assumes that the additional effects of the other levels in any
real multi-level atom should be nonresonant and relatively
small. Moreover, for the resonance fluorescence spectrum
for a two-level atom in the presence of a squeezed vacuum we
find resonant terms O(γω−1

o ) from the counter-rotating terms
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in addition to the two Lorentzian peaks (within the RWA)
at O(1) [43, 44]. Thus by subtracting from any observed
fluorescence spectrum the two Lorentzian peaks O(1) it may
be possible to observe the additional terms O(γω−1

0 ) in an
experiment. Evidently other levels in any real multi-level
atom should again have relatively little effect since all of these
other level contributions would be off-resonant and relatively
small.

This viewpoint thus suggests that it makes physical sense
to investigate in all detail and consistently up to O(γω−1

0 ) all
terms contributing to the theory of a single two-level atom
coupled to a squeezed vacuum. Additional multi-level effects
in a real atom would only complicate but not significantly
add to the understanding of an already complicated situation.
This is a part of the background motivating the study of
the two-level atom in this paper. The other part of that
motivation (as explained) is to review the application of
ORFT in quantum optics particularly by studying the single
two-level atom in the squeezed vacuum this way.

2. Einstein rate equations

2.1. The case of the ordinary vacuum and the finite
temperature effects

It is perhaps the ‘Einstein rate equation’ which has been
most fundamental to our understanding of the interaction
between atoms and radiation—ever since Einstein’s original
pioneering work [45] on his theory of the A- and B-
coefficients. For example, and well before the advent of the
laser, Max Born [46] formulated this rate equation as (and
see also, e.g., Louisell [47] and the review [48])

r ·
3(t) = −γ {(1 + r3(t)) + 2n̄r3(t)} (2)

in a modern notation. Max Born also adjoined

dn̄

dt
= d|c1|2

dt
= −d|c2|2

dt
= −1

2
r ·

3(t) (3)

which conserves mean photon number n̄ seen as a function
of time t (r ·

3(t) ≡ dr3(t)/dt). In both equations (2) and (3),
a two-level atom is implicitly understood. In this paper we
consider a two-level atom with ground and excited states |g〉
and |e〉 respectively: these states have an energy spacing
h̄ω0 and γ is the A-coefficient defined in section 1. When
the atom is in the arbitrary state |ψ(t)〉 = c1(t)|g〉 + c2(t)|e〉,
r3(t) describes the inversion: r3(t) = |c2|2 − |c1|2, while
|c1|2 + |c2|2 = 1, so 1

2 r
·
3(t) = d|c2|2/dt and this links r ·

3(t),
equation (2), to the radiation rate dn̄/dt , equation (3), since
conservation of mean photon number requires n̄ + 1

2 r3 + 1
2 =

constant. We shall derive a generalized Einstein rate equation
for the inversion r ·

3(t) of a single two-level atom in the
squeezed vacuum in this paper.

Under conditions in which n̄ is itself a constant
equilibrium value, equation (2) as given by Born [46]
becomes linear in r3(t) and its solution is

r3(t) = (1 + 2n̄)−1{(1 + (1 + 2n̄)r3(0))e
−γ (1+2n̄)t − 1} (4)

and as t → ∞, r3(t) → −(1 + 2n̄)−1. If the atom is
surrounded by ambient black-body radiation in equilbrium, n̄
is the Planck function, n̄ = (eβh̄ω0 −1)−1. Then |c2|2/|c1|2 =

(1 − r3(t))/(1 + r3(t)) = e−βh̄ω0 , so the state occupation in
the atom is Boltzmann as was envisaged by Einstein [45–48].

The curly bracket in equation (2) shows that this
rate equation embodies both stimulated absorption and
the celebrated stimulated emission first envisaged by
Einstein [45]: the spontaneous term is the 1 + r3(t) = 2|c2|2
in equation (2). Thus, as a working theory awaiting the
advent of the laser and a deeper, quantum optical, analysis the
theory of this ‘Einstein rate equation’ was already complete.
But because of the obvious fundamental importance of the
equation, two of the present authors subsequently gave the
analysis of [49, 50] for it. Done at the level of low-energy
q.e.d., particularly important conclusions from [49, 50]
were (i) that, to reach equation (2) from a two-level atom
Hamiltonian in which the interaction with the radiation field
was taken in the RWA, it was necessary to replace expectation
values taking the form 〈e(−)

0 (t)R3(t)e
(+)
0 (t ′)〉 by products of

expectation values 〈e(−)
0 (t)e

(+)
0 (t ′)〉〈R3(t)〉 in which 〈R3(t)〉 is

identified as r3(t) above: the e
(±)
0 (t) are (see below) free-field

operators. If such steps, which replace averages of atom–field
operator products by products of averages, are not made,
and we describe such steps as an atom–field decorrelation
below, the system is not closed in r3(t) = 〈R3(t)〉 simply, and
equation (2) becomes a large system of coupled equations;
(ii) in order to obtain the Planck radiation law (and the Planck
function n̄ already introduced for black-body radiation
in equilibrium by assuming the Boltzmann distribution
|c2|2/|c1|2 = e−βh̄ω0 ) it was necessary to consider many
atoms all coupled to the black-body radiation (which was to
be expected). But then, in order to reach the rate equation (2)
it was also necessary to make these atoms independent of
each other by ignoring any cooperative effects. A calculation
which reported measurable effects due to such cooperative
action of the atoms was first given in [50] and appealed to
the Hamiltonian of Dicke [51] for Na > 1 atoms occupying
the same single site. Experiments which confirmed the
theoretical predictions of [50], namely that as Na → ∞ the
system behaves in equilibrium as a giant quantum oscillator,
were reported at the same time [41] (also see [52]) using
Rydberg Na atoms interacting with black-body radiation in
low-Q microwave cavities at a wavelength of 2.2 mm and
temperatures of ∼300 K. In [53] we successfully extended
this giant quantum oscillator theory to the case of the
squeezed vacuum.

These cooperative giant quantum oscillator states at
equilibrium mean that the atoms now satisfy a Bose–
Einstein statistics rather than a simple Boltzmann distribution
individually [50]. The authors of [49] also investigated the
theory if the atoms remained noncooperative and independent
but the atom–field decorrelation referred to above was not
made: various observable effects were described but, as far
as we know, no experiments have been undertaken to observe
these. Finally, concerning equation (2) itself, it is very
relevant to the work now described in this paper to point out
that exactly the same rate equation, (2), is obtained whether
the RWA is made or not.

Thus, to sum up at this point, by studying single two-level
atoms the purpose of the present paper is to derive by ORFT
the novel results predicted for many two-level atoms under
assumptions equivalent to atom–field decorrelation (i) and
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independent atoms (ii) for such two-level atoms in a broad-
band squeezed vacuum rather than black-body radiation:
some of the correspondences between these two situations
are already drawn in, e.g., [9] (and see, e.g., [54, 55]).

Note that these results as described so far are all in
the RWA; but as noted above the Einstein rate equation in
black-body radiation is the same whether the RWA is made
or not [49, 50]. However, one can see that this will not
be the situation in the squeezed vacuum field. Typically
this is an excited state of the radiation field comprised of
even number photon states only, and within the RWA terms
associated with two-photon processes oscillating at twice the
atomic transition frequency, namely at 2ω0, are discarded.
This suggests that the rate equation (2) will show additional
interesting effects in a squeezed vacuum but only outside the
RWA. A point of this paper is thus to report these novel effects
occurring outside the RWA for one, or many independent
atoms in a broad-band squeezed vacuum. These effects are
in particular the oscillatory terms in r3(∞) already described;
but they correspondingly modify the fluorescence spectrum
in the squeezed vacuum as we show (we note that they also
modify correlation functions such as the intensity–intensity
correlation function like that investigated in [49]).

We must also note that we have already shown that
in such a squeezed vacuum there actually are additional
cooperative-atom effects from more than one atom in
squeezed vacua. In particular, at microwave frequencies as
we have remarked [53] that as Na → ∞ a giant quantum
oscillator state is again formed. At Na < ∞ there are
however differences of detail between the effects of black-
body radiation and the effects of the squeezed vacuum on the
atomic behaviour and on the fine structure of the cooperative
fluorescent and absorption spectra [53, 56] and the situation
needs an experimental investigation—one comparable with
that already made [41,52] for the black-body case, if this can
be done.

As noted, some correspondences between black-body
thermal field effects and the effects of the broad-band
squeezed vacuum are already drawn in [9, 54, 55]. The
investigations of [9,53] use ORFT taken in the RWA. In this
paper we use this ORFT as described originally in [36] (see
also in [9]) to investigate the novel effects arising outside the
RWA mainly in the rate equation generalizing equation (2)
and in the fluorescence spectrum as already explained.

2.2. Analysis of the operator equations of motion

The Hamiltonian H for a single two-level atom with
transition frequency ω0 interacting with the quantized
radiation field taken in dipole approximation and without the
RWA can be put in the form

H = 1
2 h̄ω0σz +

∑
k,λ

h̄ωka
†
k,λak,λ − p · e. (5)

Operators σx,y,z are Pauli spin operators while k, λ label
modes of the quantized radiation field: ωk = ck. The dipole
operator p = pσxû = p(σ+ + σ−)û: p is the matrix element
and û the direction of p. In the RWA, the operator pσ+

couples only to the positive frequency part of the field while
pσ− couples only to the negative frequency part. If we
then pick-off one and only one mode k, λ from equation (5)

(for example a resonant mode) there is also a total number
operator commuting with H in the RWA. This is the source
of Born’s additional equation, (3), which he (Born) has over
simplified. In this paper, outside the RWA we need to take
into account the total reaction field and all of its modes. The
action of this total reaction field outside the RWA is evident
in equations (8) and (9) below.

As they are defined the raising and lowering Pauli
operators σ± satisfy, with σz the usual su(2) Lie algebra for
angular momentum

[σ+, σ−] = σz, [σz, σ±] = ±2σ±. (6a)

For the spin- 1
2 two-level atoms there are also the anti-

commutators

[σ+, σ−]+ = 1, [σ±, σz]+ = 0. (6b)

The total field operator e, quantized in a large box of volume
V , is

e(t) = i
∑
k,λ

g
k,λ

(ak,λ(t) − a
†
k,λ(t)) (7)

and the vector coupling g
k,λ

= (2πh̄ωkV
−1)1/2ε̂k,λ: the ε̂k,λ

are the unit polarization vectors.
From the Hamiltonian H , equation (5), Heisenberg’s

equations of motion for the atomic operators, taken in a
normal ordering prescription [9, 36], are (p = pu)

σ ·
z(t) = −2ih̄−1p.[e−(t)(σ−(t) − σ+(t))

+(σ−(t) − σ+(t))e
+(t)] (8)

σ ·
−(t) = −iω0σ−(t)

−ih̄−1p.[e−(t)σz(t) + σz(t)e
+(t)] = (σ ·

+(t))
+. (9)

For normal ordering one splits e(t) into e±(t), positive and
negative frequency part fields. In ORFT one distinguishes
self-fields e±

self(t) from free fields e±
0 (t) so that (for the one

atom)
e±(t) = e±

0 (t) + e±
self(t). (10)

The free fields are

e±
0 (t) = ±i

∑
k,λ

g
k,λ

{
ak,λ(0)
a

†
k,λ(0)

}
e∓iωkt (11)

while ([9, 36]; and references therein)

e±
self(t) = ±i

2

3

(ω0

c

)3
pσ∓(t)

± 2

3π

(ω0

c

)3
p ln(ωcω

−1
0 )[σ+(t) − σ−(t)]; (12)

ωc is the cut-off frequency for ω and can be taken as the
Compton frequency.

Because e±
self(t), equation (12), depend on σ±(t), even

though they depend only linearly, both of equations (8)
and (9) are nonlinear operator equations. But from the
definitions of the field operators and an appeal to the algebra
of equations (6) one finds that the nonlinear equations (8),
(9) reduce to the coupled set of linear operator equations

σ ·
z(t) = −γ (1 + σz(t)) − 2h̄−1p ·

×
∑
k,λ

g
k,λ

[a†
k,λ(0)σ−(t)eiωkt

−σ−(t)ak,λ(0)e
−iωkt + h.c.] (13)
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σ ·
−(t) = (− 1

2γ − iω′
0)σ−(t) + ( 1

2γ − i20)σ+(t)

−h̄−1p.
∑
k,λ

g
k,λ

[a†
k,λ(0)σz(t)e

iωkt

−σz(t)ak,λ(0)e
−iωkt ] = (σ ·

+(t))
+ (14)

and γ is the A-coefficient: ω′
0 is the atomic frequency

ω0 shifted by the ordinary vacuum (ω′
0 = ω0 − 20;

20 = γπ−1 ln(ωc/ω0) [6, 7, 9] and 20ω
−1
o = O(γω−1

0 )).
From equations (13), (14) we first of all derive the

equation for the mean atomic inversion r3(t) = 〈σz(t)〉 and
thus derive the generalization of equation (2) to the squeezed
vacuum: |〉 is here the initial state of the field and atom
together. A formal integration of the operator equation (14)
yields

σ−(t) = σ−(0)e−( 1
2 γ+iω′

0)t

+
∫ t

0
e−( 1

2 γ+iω′
0)(t−t ′)

{
( 1

2γ − i20)σ+(t
′)

−h̄−1p ·
∑
k,λ

g
k,λ

[a†
k,λ(0)σz(t

′)eiωkt
′

−σz(t
′)ak,λ(0)e

−iωkt
′
]

}
dt ′ = (σ+(t))

+ (15)

and if this result is substituted into equation (13) one finds
that (compare [9, 49])

σ ·
z(t) = −γ (1 + σz(t)) + A + B + C. (16)

The t-dependent operators A, B and C are

A = −2h̄−1p ·
∑
k,λ

g
k,λ

{a†
k,λ(0)[σ−(0)e−30t

−σ+(0)e
−3∗

0 t ]eiωkt + h.c.} (17a)

B = −2h̄−1p ·
∑
k,λ

g
k,λ

×
∫ t

0
{a†

k,λ(0)[(
1
2γ − i20)σ+(t

′)e−30(t−t ′)

−( 1
2γ + i20)σ−(t ′)]e−3∗

0 (t−t ′)]eiωkt + h.c.}dt ′ (17b)

and

C = −2h̄−2p p
∑
k,λ

∑
k′,λ′

g
k,λ

g
k′,λ′

×
∫ t

0
{a†

k,λ(0)σz(t
′)ak′,λ′(0)e−30(t−t ′)+i(ωkt−ωk′ t ′)

+a†
k′,λ′(0)σz(t

′)ak,λ(0)e
−30(t−t ′)−i(ωkt−ωk′ t ′)

−a
†
k,λ(0)a

†
k′,λ′(0)σz(t

′)e−30(t−t ′)+i(ωkt+ωk′ t ′)

−σz(t
′)ak′,λ′(0)ak,λ(0)e

−30(t−t ′)−i(ωkt+ωk′ t ′)

+h.c.} dt ′ (17c)

where 30 = 1
2γ + iω′

0. These somewhat monstrous operator
expressions are complete so far; and their expectation values
are to be taken with respect to the initial state of the atom and
the initial state of the field which is a squeezed vacuum field.
Within the RWA the same problem is negotiated in [9] and as
there we shall need a model for a three-dimensional mode-
to-mode correlated squeezed vacuum such as might perhaps
be created by an optical parametric amplifier (OPA). Our
choice here is the same isotropic three-dimensional model of
the correlated squeezed vacuum introduced in [9]. This is

based on expectation values of pairs of free-field operators
〈a†

k,λak′,λ′ 〉 and 〈a†
k,λa

†
k′,λ′ 〉 for each mode pair (k, λ), (k′, λ′).

As shown in [9] this isotropic model, together with
similar specifications for three-dimensional squeezed vacua
of different anisotropic geometries, coincide in results with
those adopted more ad hoc in [57]. Following our work in [9]
we shall therefore assume that the vacuum is characterized
by∑
λ,λ′

ε̂k,λε̂k′,λ′ 〈a†
k,λak,λ〉 = Nk(kk

′)−1δ(k − k′)(U − k̂k̂)

(18a)∑
λ,λ′

ε̂k,λε̂k′,λ′ 〈a†
k,λa

†
k′,λ′ 〉

= M∗
k,k′(kk

′)−1δ(k + k′ − 2kp)(U − k̂k̂) (18b)

while, as befits the vacuum, squeezed or unsqueezed,

〈ak,λ〉 = 〈a†
k,λ〉 = 0. (18c)

The real numbers Nk and the complex numbers M∗
k,k′ ,

depending only on wavenumbers for isotropy, now
characterize this vacuum mode pair by mode pair. In practice,
we shall work with Nk and the simpler M∗

k,k′ = M∗
k as

characterizing it. For minimum uncertainty |Mk|2 = Nk(Nk+
1) (e.g. [9, 57] and references therein).

In these expressions (18a)–(18c) U is the unit tensor
and k̂ is the direction of the wavevector k = kk̂ with dyadic
k̂k̂; then k is the mode wavenumber, ω = ck is the mode
frequency and in particular 2ωp ≡ (2kp)c is the frequency of
the field pumping the squeezed vacuum (the OPA pump field).
Evidently the δ-function in equation (18b) conserves energy;
but momentum is not conserved (conservation of both energy
and momentum together leads to a one-dimensional not
a three-dimensional vacuum [9, 58]). Missing momenta
are therefore supposed to be provided at the crystal down-
converting the pump. Comments on conservation of energy,
momenta and polarization (or otherwise) are given in [9,58];
and results for geometries other than isotropic are also given
there. As was noted these results overlap with expressions
adopted in [57].

Equation (16) is now to be traced over |〉 ≡ |field〉 |atom〉,
and the resultant expectations 〈field| · · · | field〉 are given by
equations (18a)–(18c). However, the initial state |atom〉,
for the atom, can remain arbitrary. The squeezed vacuum
property equation (18c) immediately eliminates A which
therefore vanishes from the theory. For the terms in B the
substitution there of the integral form, equations (15) for
σ∓(t) makes these terms in B of order O(e4): for present
purposes we need to keep corrections O(γω−1

0 ) outside the
RWA which are O(e2). So we drop these O(e4) terms (i.e.
drop O(γ 2ω−2

0 )) and eliminate B.
The terms in C remain significant. We first use the

unequal time commutation relation between the free-field
operators e±

0 (t) and arbitrary atomic operators (called ρ(t ′)
say) at different times t and t ′. This is [49, 59]

[e±
0 (t), ρ(t ′)] = 0 (19)

under the condition t > t ′. At this point, in order
to isolate the free-field expectation values appearing in
equations (18a), (18b) we must adopt the atom–field
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decorrelation approximation called (i) earlier: otherwise
we gain a large system of coupled equations extending the
equation (2). As explained this decorrelation is of the
form 〈ÂF̂ 〉 ≈ 〈Â〉〈F̂ 〉 for atom and field operators Â and
F̂ respectively. For black-body fields [49, 50] it is valid for
weak fields and short times only. Observable corrections
were noted in [50]. Investigation of comparable effects in
the context of this analysis for the squeezed vacuum is not
complete yet and will be reported in due course.

We thus make the atom–field decorrelation and shall
assume the Markov approximation. It is known [60] that in
the context of spontaneous emission into the normal vacuum
there are additional terms in the decay at large times t > γ−1

of the form γω−1
0 (ω0t)

−2 � γ 3ω−3
0 . Here we are concerned

with outside the RWA at first order in γω−1
0 , so we adopt the

Markov approximation on this basis.
With the matter–field decorrelation and Markov

approximation we find

〈σ ·
z(t)〉 = −γ (1 + (1 + 2N)〈σz(t)〉)

−γ (F (M)e−2iωpt + c.c.)〈σz(t)〉 (20)

which is the generalization of the rate equation (2) we are
looking for. The number F(M) is given by

F(M) = {(2ωp − ω′
0)/ω

′}3M(2ωp − ω′
0)

+{(2ωp + ω′
0)/ω

′
0}3M(2ωp + ω′

0)

−iπP
∫ ∞

0
M(ωk)(ωk/ω

′
0)

3{(ω′
0 − ωk + 2ωp)

−1

−(ω′
0 − ωk − 2ωp)

−1} dωk (21)

and M(ω) = Mk , k = ωc−1. Likewise, N = N(ω′
0) and

N(ω) isNk at k = ωc−1; the P means principal value integral
and provides (compare [9]) a form of renormalization.

With 〈σz(t)〉 identified as r3(t) one sees immediately that
equation (20) is the rate equation, (2), to which the terms in
F(M) are added once n̄ there is identified with N : in fact [9]
n̄ ≡ N(ω′

0) for black-body radiation, for example. Thus
the new feature is indeed the term in F(M) and its c.c. and
these terms are entirely due to the inclusion of corrections
outside the RWA (the anti-resonant terms) in the presence of
the squeezed vacuum. Note that M(ω) = 0 for black-body
radiation so the RWA has no effect on the rate equation in
this case as was recognized [49, 50]. Equation (20) is thus
the Einstein rate equation modified by corrections outside
the RWA induced entirely by the squeezed vacuum. We
show that they include an oscillation even in the steady state
limt→∞〈σz(t)〉.

For simplicity we choose exact resonance ωp = ω′
0 for

the pump of the squeezed vacuum and takeM(ω) ≡ Mk = M

(constant) in the range ω1 � ω′
0 � ω2 and M = 0 elsewhere.

Then the generalized rate equation, (20), is

r ·
3(t) = −γ − γ [(1 + 2N)

+2|M|(1 + 22
M)

1/2
cos(2ω′

0t − δ)]r3(t) (22)

after the identification r3(t) ≡ 〈σz(t)〉. The phase δ is

δ = φ + tan−1 2M (23)

where

2M = π−1

[
ln

(
ω′

0 + ωk

3ω′
0 − ωk

)]ω1

ω2

(24)

andM = |M|eiφ . WhenM ≡ 0, equation (22) is equation (2)
with n̄ ≡ N , so it is the parameterM of the squeezed vacuum,
outside the RWA, which provides the new features.

2.3. Analysis of the generalized rate equation

At first sight the initial radiation rate − 1
2 r

·
3(0) is

γ [1 + N + |M|(1 + 22
M)1/2 cos δ] for an initially inverted

atom (r3(0) = +1). For |M| = √
N(N + 1) and

δ = 0 (for example), γ [1 + N + |M|(1 + 22
M)1/2 cos δ] >

γ (1 + 2N) > γ (1 + N) (case of black-body radiation) and
the radiation rate at t = 0 is thus enhanced. However,
this enhancement at t = 0 would in practice be scarcely
observable since the rate is actually modulated at the very
high frequencies 2ω′

0. The role of the phase δ and thus of φ
is also significant. There is no particular reference phase for
φ as there would be if the external driving field was a coherent
driving field of frequency ωp. Instead φ is determined by the
processes of the OPA: we can expect to consider it a random
phase (or a dynamical phase, as recently suggested in [61]),
but in any realization it will take a particular value.

The solution of equation (22) when |M| �= 0 is

r3(t) = e−γ (1+2N)te−b sin(2ω′
0t−δ)

{
r3(0)e

−b sin(δ)

−γ

∫ t

0
dt ′eγ (1+2N)t ′+b sin(2ω′

0t
′−δ)

}
. (25)

Comparison with equation (4) will show that because
|M| �= 0 in the squeezed vacuum, terms of order b ≡
γ |M|

√
1 + 22

M/ω′
0 (in which |M| = O(1)) have emerged

from the anti-resonant terms outside the RWA.
The integral in equation (25) is expressible in terms of a

series in modified Bessel functions In(b). We give the result
for the steady state taking δ = 0 for simplicity. This result is

r3(∞) = −γ (2ω′
0)

−1e−b sin 2ω′
0t

{
1

α
I0(b)

+2Re
∞∑
n=1

(α − in)In(b)

(α2 + n2)
ein(2ω′

0t− π
2 )

}
(26)

in which α ≡ γ (1 + 2N)/2ω′
0. The factor e−b sin 2ω′

0t also has
an expression in terms of the In(b) and the non-oscillatory
component easily proves to be

(r3(∞))0 = − 1

1 + 2N
I 2

0 (b)

= − 1

1 + 2N


1 +

1

2


γ |M|

√
1 + 22

M

ω′
0




2

+ · · ·


 . (27)

In addition to this is the steady oscillatory component as
is shown in figures 1 and 2: notice that the onset of the
oscillatory behaviour is affected by the phase δ, figures 1(a),
(b).

The expression (26) for r3(∞) is plainly of period T =
2π(2ω′

0)
−1 = π(ω′

0)
−1 where ω′

0 = ω0 − 20 and 20 is the
ordinary vacuum radiative shift (i.e., r3(∞) is of period 2π
if plotted against normalized time τ ≡ 2ω′

0t (figure 1) and
of period 2π/( 2ωo

γ
) ≡ 2π(

γ

2ωo
) if plotted against normalized

time τ0 ≡ γ t (figure 2). The effect of this vacuum shift is
clear for values of γ /ω0 ∼ 10−2 (figure 2(a)). It will be
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Figure 1. The atomic inversion r3(t) against the normalized time
τ = 2ω′

0t for γ /(2ω0) = 10−2 and phase value δ = 0 and for an
initially inverted atom (r3(0) = +1) in the case of the squeezed
vacuum with N = 1, |M| = √

N(N + 1): the dotted curve
represents the solution in the RWA (equation (4)), the full curve
represents the solution without the RWA (equation (25)). Note
r3(t) is only shown in the interval −0.36 < r3(t) < −0.31 (b) as
(a) but for the phase value δ = π .

interesting to see whether it is this vacuum shifted frequency
which is eventually observed, the shift being O(γω−1

0 ) as
has been described already. Notice from the figures that the
amplitude of the oscillation at the frequency 2ω′

0 is O(γω−1
0 )

as explained. Notice in figures 1, 2(a) γω−1
0 is taken to be

10−2 (not the more realistic values 10−6 or 10−7 for optical
frequencies)—but see our comment in section 5 where the
ratio γω−1

0 could be larger for an electron spin- 1
2 system.

3. The polarization

We have thus solved for the inversion r3(t) ≡ 〈σz(t)〉 taken
from equation (13). For the operator equation (14), we
can follow the same procedure by formally integrating
equation (13) for σz(t) and inserting the result into (14); the
use of the squeezed vacuum correlation functions (18) and of
the relation (19) then leads finally to the following equations:

〈σ ·
−(t)〉 = (−3 − i(ω′

0 − 2N))〈σ−(t)〉
+(3 − iδN)〈σ+(t)〉 − γm1〈σ+(t)〉e−2iωpt

−γm∗
3〈σ+(t)〉e2iωpt + (γm∗

1e2iωpt

−γm3e−2iωpt )〈σ−(t)〉
= 〈σ ·

+(t)〉∗. (28)

Figure 2. The steady ‘oscillatory’ atomic inversion r3(∞),
equation (26), in the squeezed vacuum case N = 1, |M| = √

2,
δ = 0 outside the RWA against the normalized time τ0 = γ t and
for values of ( γ

2ω0
) = 10−2, 10−4; (a), (b) respectively. Full and

broken curves represent the (ordinary) vacuum shift 20 = 0 and
20 = γ .

In these equations of motion ω′
0 ≡ ω0 − 20

and 20 is the radiative shift of the ordinary vac-
uum as before; 2N ≡γπ−1P ∫ ∞

0 dωk(ωk/ω
′
0)

3N(ωk)

[(ω′
0 − ωk)

−1 + (ω′
0 + ωk)

−1] is the corresponding shift due
to the squeezed vacuum and δN = 20 + 2N is the to-
tal radiative shift; 3 = 1

2γ (1 + 2N); γm1 = γ ((ωp +
2)/ω′

0)
3 M(ωp + 2) − i2M1 ; γm3 = γ ((2ωp + ω′

0)/ω
′
0)

3

M(2ωp + ω′
0) + i2M3 ; 2M1 ≡ γπ−1 P ∫ ∞

0 dωk (ωk/ω
′
0)

3

M(ωk) (ωk −ω′
0)

−1; 2M3 ≡ γπ−1P ∫ ∞
0 dωk (ωk/ω

′
0)

3

M(ωk) (3ω
′
0 − ωk)

−1; and2 = ωp − ω′
0 is the squeezed vac-

uum detuning parameter.
As compared with similar analysis for a thermal field

assuming the RWA [49], there are two new features in
equations (28): one is that 〈σ ·

−(t)〉 couples to 〈σ+(t)〉 through
the (3 − iδN)〈σ+(t)〉 term, an anti-resonant term brought
in by correction outside the RWA [36]: the second is the
−γm1〈σ+(t)〉e−2iωpt induced by the squeezed vacuum M �=
0. Note that in m1, the parameter M(ωp + 2) is, strictly
speaking, renormalized by the −i2M1 , [9]. However, we
simplify m1 to M here and look for envelope solutions

〈S±(t)〉 = 〈σ±(t)〉e±iωpt . (29)

Then, since both terms in m3, m∗
3 become highly oscillatory,

or else by simply ignoring the squeezing produced at the
higher frequency through M(ω) with ω ≈ 3ωp, we reach
just

〈S ·
−(t)〉 = −(3 − i2)〈S−(t)〉 − γM〈S+(t)〉

+[(3 − iδN)〈S+(t)〉 + γM∗〈S−(t)〉]e2iωpt

= 〈S ·
+(t)〉∗. (30)
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In the RWA anti-resonant terms in e2iωpt are dropped so that
the RWA solutions 〈S±(t)〉0 solve the system

〈S ·
−(t)〉0 = −(3 − i2)〈S−(t)〉0 − γM〈S+(t)〉0

〈S ·
+(t)〉0 = −(3 + i2)〈S+(t)〉0 − γM∗〈S−(t)〉0.

(31)

In the resonant case (2 = 0) the solution of (31) for
the atomic dipoles 〈Sx〉 = 〈S+ + S−〉 and 〈Sy〉 = i〈S+ −
S−〉 shows there are two different (transverse) decay
constants [43]. For 2 �= 0 the solutions of (31) were reported
in [62] which show that for 2 > γ |M| the atomic dipoles
oscillate with two different frequencies, namely (ω′

0 + θ)

and (ωp + 2 − θ), where θ ≡ γ 2|M|2/22 is a squeezing-
induced Bloch–Siegert shift [62] (an analogue of the optical
Bloch–Siegert shift (γ 2/8ω′

0) in a normal vacuum outside
RWA (cf [63]).

It is worth noting that equations similar to (31) can be
reached within the context of the study of the spontaneous
dynamics of a two-level atom in the presence of a phase-
conjugating mirror (PCM), where the parameter M in this
case is related to the vacuum field modes that are conjugated
and reflected by the PCM to the atom [64, 65]

4. The fluorescence spectrum

We now calculate the fluorescence spectrum outside the RWA
according to equations (30) working up to the first correction
in O(γ /ω′

0). To do this we substitute 〈S±(t)〉0 (the solutions
of (31) in the RWA [62]) for 〈S±(t)〉 in the terms multiplied
by e±2iωpt in the more exact equations (30): so 〈S±(t)〉0 is
a zeroth-order iteration O(γ /ω′

0). The first-order iterations
〈S±(t)〉1 then solve the system

〈S ·
−(t)〉1 = −(3 − i2)〈S−(t)〉1 − γM〈S+(t)〉1

+[(3 − iδN)〈S+(t)〉0 + γM∗〈S−(t)〉0]e2iωpt

= 〈S ·
+(t)〉∗1. (32)

Here we only report the solutions for the case 2 > γ |M|,
(other cases of2 � γ |M|can be similarly considered). These
solutions for 2 > γ |M|are

〈σ+(t)〉1 = (a0 + a1)e
−(3−iωp−iw)t

+(b0 + b1)e
−(3−iωp+iw)t

+(c1e−(3+iωp−iw)t + c2e−(3+iωp+iw)t

+c3e−(3−3iωp+iw)t + c4e−(3−3iωp−iw)t )

= 〈σ−(t)〉∗1 (33)

where a0, b0 = [(w ∓ 2)〈σ+(0)〉 ± iγM∗〈σ−(0)〉]/2w;
w =

√
22 − γ 2|M|2 ≈ 2 − θ and a1, b1, ci (i = 1–4)

are numbers calculated to O(γ /ω′
0) outside the RWA. Note

that the terms in a0, b0 represent the zeroth-order solutions
〈σ±(t)〉0 in the RWA.

Based on (33) or its equivalent operator form the
resultant fluorescence spectrum in the steady state, G(ω) ≡
Fourier transform of limt→∞〈σ+(t + τ)σ−(t)〉1 + c.c., can
be calculated either by appealing to the quantum regression
theorem [66] or by direct methods [37]. For simplicity we
take M = real and G(ω) is given, up to O(γω

′−1
0 ), by

G(ω) = G0(ω) + G1(ω) (34)

where

G0(ω) = γN

2(2 − θ)

[
(22 − θ)

32 + (ω − (ω′
0 + θ))2

+
θ

32 + (ω − (2ωp − ω
′
0 − θ))2

]
(35)

is the two Lorentzian’s structure calculated within the
RWA [44] to O(1) in terms of γω−1

p (this order replacing

the order γω
′−1
0 , but ωp ≈ ω

′
0). The second quantity

in (34), G1(ω), represents four additional anti-resonant terms
O(γω−1

p )—all of which vanish if M = 0. Two of these
corrections are of ‘resonant dispersive’ type and induce
asymmetric corrections O(γω−1

p ) to each Lorentzian in (35).
These two terms are

γNM(δNω−1
p )

2(1 + 2N)(2 − θ)

[ −(ω − (ω′
0 + θ))

32 + (ω − (ω′
0 + θ))2

+
(ω − (2ωp − ω′

0 − θ))

32 + (ω − (2ωp − ω′
0 − θ))2

]
. (36)

The remaining two terms in G1(ω) are not resonant and are

γNM

2(1 + 2N)(2 − θ)

[−((δN + θ)ω−1
p )(ω + ω′

0 + θ)

32 + (ω + ω′
0 + θ))2

+
((22 − θ + δN)ω−1

0 )(ω + 2ωp − ω′
0 − θ)

32 + (ω + 2ωp − ω′
0 − θ)2

]
. (37)

For actual detection, of the dispersive structure of (36), it
thus remains to subtract the two Lorentzians in (35) from the
observed spectrum and look for the corrections due to each
of the resonant dispersive terms O(γω−1

p ).
It is relevant that the comparable (exact) steady state

spectrum outside the RWA for black-body radiation, rather
than for the squeezed vacuum, is

G(ω) =
γN(1 − 2δN

ω+ω0
)

[32( 2ω
ω+ω0

)2 + (ω − ω0 + 2ω0δN
ω+ω0

)2]
(38a)

≈ γN

2(ωo − θN)

[
(2ω0 − θN)

32 + (ω − (ω0 − θN))2

− θN

32 + (ω + (ω0 − θN))2

]
(38b)

where in (38b) we have approximated
√
ω2

0 − (32 + δ2
N) ≈

ω0 − θN and θN = (32+δ2
N )

2ω0
= O(

γ 2

ω0
) ≈ O(1) is a generalized

Bloch–Siegert shift for the black-body field case. This shift
θN reduces to the optical Bloch–Siegert shift (γ 2/8ω′

0) in
normal vacuum [63] if N = 0 and 20 � 0. Note that the
familiar G(ω) for the black-body field in the RWA [42, 49]
is regained if θN is dropped. Note too that the second
term in (38b) is not of resonant type and is O( θN

ω0−θN
) =

O(
γ 2

ω2
0
) which is still negligible at O(γω−1

0 ). Otherwise the

first term in (38b) calculated outside the RWA, which is a
Lorentzian centred at ω = ω0 − θN , is comparable with
the first term in (35) for the squeezed vacuum calculated
inside the RWA. Thus, in the black-body radiation case the
fluorescence spectrum is affected outside the RWA and in this
it is unlike the Einstein rate equation, (2), as noted before.
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5. Summary

Thus by using ORFT we have been able to give for a
broad-band isotropic squeezed vacuum a comprehensive
analysis, exact within our present understanding of quantum
mechanics, to O(γω−1

p ) for both the generalized rate equation
corresponding to the Einstein rate equation, (2), and for
the fluorescence spectrum. The results are specific to the
isotropic vacuum only in detail and comparable results should
arise for all geometries of the vacuum. The particular effects
O(γω−1

p ) arising outside the RWA are small but evidently of
considerable fundamental interest. Perhaps the oscillatory
behaviour in the steady state arising in the rate equation
at O(γω−1

p ) is the most striking of these results; while
concerning the smallness of these quantities O(γω−1

p ) and
their actual measurement it is worth noting again (and see
section 1) that: (i) these terms are of the same order as that of
the radiative (Lamb) shifts measured since 1947 [20]; (ii) the
asymmetric dispersive structure correction O(γω−1

p ) induced
by equation (36) into the spectrum of two Lorentzians (35)
is essentially a frequency shift of somewhat Bloch–Siegert
type, and Bloch–Siegert shifts have been measured [67], and,
(iii) both the behaviour of r3(∞) and the corrections (36) to
(35) are resonant phenomena, and the effects of the other
off-resonant levels in a real multi-level atom should, broadly
speaking, be of less physical significance.

One might also explicitly draw attention to the formal
connection, even as actual physics, between an atomic two-
level system and a spin- 1

2 electron. In the latter the splitting
between two spin states can be adjusted by an external d.c.
magnetic field. This suggests that a spin- 1

2 electron in such a
d.c. field immersed in the squeezed vacuum field will produce
the effects decribed in this paper. The ratio γω−1

0 can be made
larger simply by adjusting the strength of the d.c. field. As
experimental techniques continue to be refined we thus can
look forward to some actual observations in suitably chosen
broad-band squeezed vacua of the novel behaviours predicted
in this paper. For example, it may be now worth referring to
the technique called ‘spectrochronography’ which combines
spectral and temporal resolutions for an investigation of
transient light-emitting excitation in matter [68].

Note added in proof. Concerning the smallness of the
oscillations O(γ /ωp) in the steady state predicted in this
paper and particularly with reference to the points (i), (ii) and
(iii) made in section 5, the ratio (γ /ωp) ∼ 10−6 for optical
frequencies ωp and proves to be of the same order for high
Rydberg microwave transitions (section 1). However, for the
microwave Lamb line frequency ∼ 1040 MHz, Power [18,
p 115] points out that (γ /ωp) in our notation is about 1/10—
some 5 times the values adopted for figures 1 and 2 and quite
large enough (in itself at least) for a successful experimental
observation.
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