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Abstract

Implementations of the heat balance integral method are discussed in which expo-

nential functions are used in place of the familiar polynomial approximants. The ra-

tionale is based upon that of least-squares in that the use of ‘appropriate’ basis functions

can enhance solution accuracy. Whilst this is true in principle it is shown that consid-

erable skill must be exercised when deviating from polynomial approximants. The

discussions are illustrated by application to a familiar single-phase Stefan problem that

is typical of heat transfer problems exhibiting decay-like spatial solution profiles.
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1. Introduction

Goodman’s heat balance integral method is a semi-analytical technique for
generating approximate functional solutions to, typically, transport problems
that are governed by differential equations [1,2] ([3, Sections 3.5.4–3.5.6] also
provides a brief discussion). The selected profile satisfies appropriate spatial
boundary conditions together with an integrated form of the governing trans-
port equation, the heat balance integral (HBI). Additional accuracy is usually
obtained by spatial or temperature sub-division coupled with a lower-order
piecewise approximation [4–8]. The convergence of spatial sub-division
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extensions is easily observed numerically and, for simple cases, can be rigor-
ously established [9,10].
Most published papers have considered the development of polynomial

profiles and in the present work the use of exponential functions is explored
within the context of phase-change problems. Goodman himself [2] commented
that inspecting the steady-state form of a heat transfer problem may identify an
appropriate approximant for the transient phase, citing as one instance the
example of a one-fluid heat exchanger (pure heat conduction) treated with an
exponential profile [11]. Yang and Szewczyk [12] used a similar profile to treat
pure heat conduction with variable material properties.
Many ‘source term’ problems in heat conduction, including phase-change

problems, admit ‘decaying’ exponential-type solution profiles and here we in-
vestigate the use of several polynomial and exponential HBI implementations,
both for whole-domain solutions and for piecewise solutions using spatial sub-
division. It will be seen that whilst the application of piecewise linear forms
essentially requires a mechanistic approach, the use of piecewise exponential
approximants is somewhat more of an ‘art’. The reward, in terms of accuracy,
for an appropriate exponential selection is considerable, although it appears
that little can compare with the ease and general applicability of polynomial
approximation.

2. A model problem

To avoid unnecessary algebraic complications in the discussions we consider
the following one-phase problem that describes the (dimensionless) melting of
a solid semi-infinite material initially at its melt temperature:

ou
ot

¼ o2u
ox2

; 0 < x < s; t > 0; ð1Þ

ou
ox

¼ �b
ds
dt

; x ¼ sðtÞ; t > 0; ð2Þ

u ¼ 0; x > 0; t ¼ 0; ð3Þ

u ¼ 1; x ¼ 0; tP 0; ð4Þ

u ¼ 0; x ¼ sðtÞ; t > 0: ð5Þ

The well-known analytical solution to this problem is [13, Section 11.2]
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uðx; tÞ ¼ 1�
erf x=2

ffiffi
t

p� �
erfðaÞ ; 06 x6 sðtÞ; tP 0; ð6Þ

sðtÞ ¼ 2a
ffiffi
t

p
; tP 0; ð7Þ

where u denotes temperature, s denotes the location of the melt front and a is
the solution of the transcendental equation

ffiffiffi
p

p
baerfðaÞea2 ¼ 1. x and t denote

the usual independent space and time variables.

3. Whole-domain HBI solutions

The basic implementation of the HBI method generates a single functional
approximation that is defined for the entire spatial solution domain – a whole-
domain solution. Here the classical quadratic polynomial solution is outlined
followed by two exponential solutions.

3.1. Classical polynomial HBI approximation

The quadratic approximant used by Goodman [2, p. 73] took the form
vðx; tÞ ¼ bðx� sÞ þ cðx� sÞ2 where the melt front s and the parameters b and c
(functions of time) are obtained by enforcing the spatial conditions (2) and (4)
together with a heat balance integral that is obtained by integrating Eq. (1)
over the interval 06 x6 s and replacing u by v. Condition (5) is already sat-
isfied. Goodman [2] used the alternative form for Eq. (2)

ou
ox

� �2

¼ b
o2u
ox2

; x ¼ sðtÞ; t > 0; ð8Þ

(which shows the non-linear nature of the melting problem) and suggested that
its use avoids the introduction of a second-order differential equation for s. In
fact appropriate use of Eq. (2) does not introduce higher-order derivatives and
also produces a more accurate solution [14].
The quadratic form

vðx; tÞ ¼ b 1
�

� x
s

�
þ c 1

�
� x

s

�2
; ð9Þ

admits parameters b and c that are constants. Conditions (2) and (4) combine
with the heat balance integralZ s

0

ov
ot
dx ¼ �b

ds
dt

� ov
ox

				
x¼0

ð10Þ

to produce the equations

F. Mosally et al. / Appl. Math. Comput. 130 (2002) 87–100 89



s
ds
dt

¼ b
b
; bþ c ¼ 1; and s

ds
dt

¼ 6ðbþ 2cÞ
3bþ 2cþ 6b

:

Eliminating c and sðds=dtÞ gives an equation for b, b2 þ ð2þ 12bÞb� 12b ¼ 0,

with solution b ¼ �1� 6b þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ 24b þ 36b2

q
. Thus

s ¼ 2

ffiffiffiffiffiffi
bt
2b

s
¼ 2a� ffiffi

t
p

; a� ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
�1� 6b þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ 24b þ 36b2

q
2b

vuut
:

For b ¼ 1 the parameter values are b ¼ 0:8102, c ¼ 0:1898 and a� ¼ 0:6365.
The solution is shown in Table 1 for t ¼ 1.

3.2. Exponential HBI approximations

The test problem (1)–(5) does not have a finite-domain steady-state solution.
The characteristic process of heat transfer (Fourier’s law) suggests that a
suitable transient approximant might be exponential,

vðx; tÞ ¼ aþ becx=s; ð11Þ

where a, b, and c are constants to be determined. Conditions (2), (4) and (5)
combine with the heat balance integral (10) to give

s
ds
dt

¼ � bcec

b
; aþ b ¼ 1; aþ bec ¼ 0; ð12Þ

s
ds
dt

¼ bc2

b cec � ec þ 1ð Þ � bc
: ð13Þ

Eliminating a, b and sðds=dtÞ yields ½ð1þ bÞc� 1	e2c � ð2bc� 1Þec þ bc ¼ 0
that may be solved for c. a, b and s ¼ 2a� ffiffi

t
p

are found from Eq. (12), where

Table 1

Analytic, quadratic HBI and exponential HBI solutions

x=s Analytic Quadratic Exponential

Eq. (9) Eq. (11) Eq. (15)

0.0 1 1 1 1

0.2 0.7753 0.7754 0.7753 0.7756

0.4 0.5573 0.5652 0.5666 0.5575

0.6 0.3523 0.3694 0.3730 0.3518

0.8 0.1654 0.1880 0.1932 0.1638

1.0 0 0.0210 0.0262 )0.0018

s 1.2402 1.2730 1.2808 1.2371
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a� ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffi
� bcec

2b

s
¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
cec

2ðec � 1Þb

r
: ð14Þ

For b ¼ 1, c ¼ �0:3840, b ¼ 3:1364, a ¼ �2:1364 and a� ¼ 0:6404. The solu-
tion is listed in column 4 of Table 1 for t ¼ 1. A cursory inspection of the
tabulated values appears to contradict the original suggestion that an expo-
nential profile might provide more accuracy than a quadratic profile. The
values simply confirm the acknowledged sensitivity of the basic method to the
form of the approximant. To emphasise this consider the three-parameter ex-
ponential approximant

vðx; tÞ ¼ aþ bx
s
ecx

2=s2 : ð15Þ

Conditions (2), (4) and (5) together with HBI (10) generate

s
ds
dt

¼ � becð1þ 2cÞ
b

; a ¼ 1; aþ bec ¼ 0;

s
ds
dt

¼ � 2bc
b ec � 1� 2cecð Þ þ 2cb

:

The equation ð1þ 2cÞ 2cecð1þ bÞ � ec þ 1½ 	 ¼ 2cb is obtained by eliminating a,
b and sðds=dtÞ. For b ¼ 1, c ¼ �0:1174, b ¼ �1:1245 and a� ¼ 0:6186. Solu-
tion (15) is tabulated in column 5 of Table 1 and shows a remarkable im-
provement in accuracy. xe�x2 describes the first term in the power series of erfx
and the ensuing results serve to confirm the earlier suggestion that ‘consider-
able skill must be exercised’ when selecting non-polynomial approximants, a
choice that will be problem dependant. Fig. 1 reinforces these sentiments with
respect to the melt front, and Fig. 2 shows the spatial distribution of the ab-
solute error (in magnitude).

4. Two-parameter piecewise HBI solutions

Higher accuracy is achieved by the well-established route of domain de-
composition [4]. Here the use of piecewise exponential forms is compared with
the piecewise linear form.
The domain ½0; s	 is decomposed into n equal sub-intervals of length s=n and

a two-parameter profile is developed for each sub-interval. With the melt front,
s, 2nþ 1 unknowns are introduced. On each sub-interval an integral form of
Eq. (1) is satisfied by the selected function together with continuity at the sub-
interval junctions.
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Fig. 2. Absolute error in the temperature profile predictions at t ¼ 1.

Fig. 1. Predicted melt front history.

92 F. Mosally et al. / Appl. Math. Comput. 130 (2002) 87–100



4.1. Piecewise linear approximation [10]

Let vi ’ uðxi; tÞ, v0 ¼ 1 and vn ¼ 0, where xi ¼ is=n, and define v ¼ ai þ bix
for xi 6 x6 xiþ1. In finite-element parlance ai and bi are generalised coordinates
of which there are 2n. To reduce the number of unknowns to n� 1 we may re-
cast the elemental approximants in terms of the nodal variables v0; . . . ; vn,

v ¼ vi þ ðx� xiÞðviþ1 � viÞ
n
s
; xi 6 x6 xiþ1; i ¼ 0; . . . ; n� 1: ð16Þ

The nodal temperature gradients are taken to be the piecewise constants

ov
ox

¼ n
s
ðviþ1 � viÞ; x ¼ xi; i ¼ 0; . . . ; n� 1; ð17Þ

with

ov
ox

¼ �b
ds
dt

at x ¼ xðtÞ:

A heat balance integral is generated on each sub-interval from Eq. (1)Z xiþ1

xi

ov
ot
dx ¼ ov

ox

� �x¼xiþ1

x¼xi

: ð18Þ

Substituting Eqs. (16) and (17) into (18) yields n ODEs

s
ds
dt

¼ 2n2

2iþ 1

viþ2 � 2viþ1 þ vi
vi � viþ1

; i ¼ 0; . . . ; n� 2; ð19Þ

s
ds
dt

¼ 2n2vn�1
ð2n� 1Þvn�1 þ 2nb

; i ¼ n� 1: ð20Þ

Equating the right-hand sides of (19) and (20), vi can be expressed as

vi ¼ viþ1 � fi viþ2ð � viþ1Þ; i ¼ 0; . . . ; n� 2; ð21Þ
where fi ¼ ðnþ g � 1=2Þ=ðnþ g � i� 1Þ and g ¼ nb=vn�1. Repeated applica-
tion of Eq. (21), with v0 ¼ 1, produces a single equation in g,

1� g
n
þ
Xn�1
i¼1

ðnþ g � 1=2Þi

ðg þ iÞðg þ i� 1Þ . . . ðg þ 1Þ ¼ 0: ð22Þ

On solving Eq. (22) for g, the approximate temperature is found from vn�1 ¼
nb=g and Eq. (21), and the melt front is obtained from Eq. (20),

s ¼ 2a� ffiffi
t

p
; a� ¼ nffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

2nþ 2g � 1
p : ð23Þ

Convergence to the analytical solution is observed with increasing n (see Table
2) and may be confirmed rigorously [10]. The value vi is interpreted as an es-
timate to uðxi; tÞ. For b ¼ 1 and n ¼ 2, Eq. (22) becomes g2 � 3g � 5 ¼ 0 with
solution g ¼ 4:1926. The remaining solution parameters are v1 ¼ 0:4770 and
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a� ¼ 0:5927 (s � 1:1855), and the resulting temperature profile at t ¼ 1, shown
in Fig. 3, is remarkably good.

4.2. Piecewise exponential approximations

A natural choice of exponential approximation to u is

vðx; tÞ ¼ ai þ bie�x=s; xi�16 x6 xi; i ¼ 1; . . . ; n; ð24Þ

where ai and bi are constants. Using the boundary conditions (4) and (5), and
enforcing continuity at xi ¼ is=n,

Table 2

Convergent piecewise linear HBI solution

x=s Piecewise linear Analytic

n ¼ 10 n ¼ 20 n ¼ 40

0.0 1 1 1 1

0.2 0.7785 0.7769 0.7761 0.7753

0.4 0.5619 0.5596 0.5585 0.5573

0.6 0.3566 0.3545 0.3534 0.3523

0.8 0.1680 0.1666 0.1660 0.1654

1.0 0 0 0 0

s 1.2279 1.2339 1.2370 1.2402

Fig. 3. Two-element piecewise temperature profiles at t ¼ 1.
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a1 ¼ 1� b1; an ¼ �bne�1; ð25Þ

aiþ1 ¼ ai þ e�i=nðbi � biþ1Þ; i ¼ 1; . . . ; n� 1: ð26Þ

Eqs. (25) and (26) can be combined to give

1þ
Xn

i¼1
bi e�i=n
�

� e�ði�1Þ=n� ¼ 0: ð27Þ

Replacing u by v, Eq. (24), in Eq. (1) and integrating over each sub-interval
½xi�1; xi	 with respect to x, taking the temperature gradients as

ov
ox

¼ � biþ1
s
e�i=n; x ¼ xi; i ¼ 0; . . . ; n� 1 ð28Þ

with

ov
ox

¼ �b
ds
dt

at x ¼ sðtÞ;

give

s
ds
dt

¼ nðe1=nbi � biþ1Þ
bi e1=nðnþ i� 1Þ � ðnþ iÞ½ 	 ; i ¼ 1; . . . ; n� 1; ð29Þ

s
ds
dt

¼ nbne1=n

bn ð2n� 1Þe1=n � 2n½ 	 þ ben
; i ¼ n: ð30Þ

Equating the right-hand sides of Eqs. (29) and (30) produces

bne1=nbi ði
�

þ n� 1Þe1=n � ðiþ nÞ
�
� ðe1=nbi � biþ1Þ

ben
�

þ bn½ð2n� 1Þe1=n � 2n	
�
¼ 0; i ¼ 1; . . . ; n� 1: ð31Þ

Eqs. (27) and (31) form a system of n non-linear equations with n unknowns
b1; . . . ; bn (readily solved using Newton’s method). The ai are found from
Eq. (26).
A predictable drawback of form (24) is that the decay term e�x=s is the same

for each sub-interval (unlikely in practice). For b ¼ 1 and n ¼ 2 we obtain
b2 ¼ 2:0063, b1 ¼ 1:3246, a2 ¼ �0:7381, a1 ¼ �0:3246 and a� ¼ 0:6715 (s �
1:3431). Fig. 3 (curve ‘Exponential #1’) confirms the poor quality of the ap-
proximation – a ‘kink’ (first-derivative discontinuity) may be observed at ap-
proximately x ¼ 0:65 together with an inaccurate estimate of the melt front.
The situation is improved by increasing n but the piecewise exponential form
never recovers its poor performance as compared to the piecewise linear form.
To ensure first-derivative continuity at the nodes xi requires, from elemen-

tary calculus, that b1 ¼ � � � ¼ bi ¼ � � � ¼ bn. For the case n ¼ 2, b1 ¼ b2 ¼ b
and continuity at x ¼ s=2 gives b ¼ e=ðe� 1Þ � 1:5820. This leaves just one
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unknown, s, and so we cannot expect to satisfy two elemental HBIs. Conse-
quently a whole-domain HBI is developed to give

s
ds
dt

¼ b
b 1� 2e�1ð Þ þ b

with solution s ¼ 2a� ffiffi
t

p
, where

a� ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

b
2 b 1� 2e�1ð Þ þ b½ 	

s
: ð32Þ

With b ¼ 1, a� ¼ 0:7469 (s � 1:4937) and the solution profile is shown in Fig. 3
(curve ‘Exponential #2’). There is some improvement over curve #1 for the
first half of the domain, but the imposition of first-derivative continuity has
swung the melt front away from the analytical value.
An alternative two-parameter exponential approximant that incorporates

varying decay rates takes the form

vðx; tÞ ¼ ai þ ecix=s; xi�16 x6 xi; i ¼ 1; . . . ; n: ð33Þ

Following the process described for the form (24) results in n non-linear
equations for c1; . . . ; cn. This form fairs no better – for b ¼ 1 and n ¼ 2, curve
#3 in Fig. 3 shows the worsening approximation.

5. Three-parameter piecewise HBI solutions

The attraction of two-parameter approximations is that each additional sub-
interval introduces two further unknowns that can be determined by simply
enforcing continuity at the sub-interval extrema and satisfying an additional
elemental HBI. Given the exceptional results obtained with function (15) we
conclude with a brief investigation of some three-parameter piecewise HBI
implementations.
In general terms n sub-intervals introduce 3nþ 1 unknowns (3n profile pa-

rameters plus the interface location s). The following set of conditions is used
to generate the necessary equations:

Conditions No. equations

Boundary conditions (4) and (5) 2

Continuity at xi n� 1

Slope continuity at xi n� 1

HBI equations n

Stefan condition (2) 1

Total 3nþ 1
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Three approximation forms are considered,

vðx; tÞ ¼

ai þ bi xs þ ci
x2

s2
; quadratic;

ai þ biecix=s; exponential;

ai þ
bix
s
ecix

2=s2 ; Gaussian

8>>>>>><
>>>>>>:

ð34Þ

and two-element solutions are developed for each form to illustrate their rel-
ative merits. In this case 7 equations are required to evaluate the 7 unknowns
a1, b1, c1, a2, b2, c2 and a (i.e., s). Conditions (4) and (5) serve to determine a1
and a2. The values are a1 ¼ 1 and a2 ¼ �b2 � c2 (quadratic), a1 ¼ 1� b1 and
a2 ¼ �b2ec2 (exponential), and a1 ¼ 1 and a2 ¼ �b2ec2 (Gaussian). Implement-
ing the remaining five conditions generates equations for the outstanding
parameters:

• Quadratic:

4þ 2b1 þ c1 ¼ �2b2 � 3c2;

b1 þ c1 ¼ b2 þ c2;

24ðb2 þ c2 � b1Þb ¼ ðb2 þ 2c2Þð3b1 þ 2c1Þ;

24ðb2 þ c2Þb ¼ ðb2 þ 2c2Þð�9b2 � 14c2 þ 24bÞ;

s
ds
dt

¼ � b2 þ 2c2
b

:

• Exponential:

1þ b1ðec1=2 � 1Þ ¼ b2ðec2=2 � ec2Þ;

b1c1ec1=2 ¼ b2c2ec2=2;

ðb1c1 � b2c2ec2=2Þb ¼ �b1b2c2ec2
ec1=2

2

�
� ec1=2 � 1

c1

�
;

ec2=2b ¼ �ec2 b2 ec2
��

� ec2=2

2
� ec2 � ec2=2

c2

�
� b

�
;

s
ds
dt

¼ � b2c2ec2

b
:
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• Gaussian:

2þ b1ec1=4 ¼ b2ðec2=4 � 2ec2Þ;
b1ec1=4ð2þ c1Þ ¼ b2ec2=4ð2þ c2Þ;

ð2b1 � b2ec2=4ð2þ c2ÞÞb ¼ �b1b2ec2ð1þ 2c2Þ
ec1=4

2

�
� ec1=4 � 1

c1

�
;

ec2=4ð2þ c2Þb ¼ �ec2ð1þ 2c2Þ b2 2ec2
��

� ec2=4

2
� ec2 � ec2=4

c2

�
� 2b

�
;

s
ds
dt

¼ � b2ec2ð1þ 2c2Þ
b

:

The various systems of equations are numerically tractable (e.g., Newton’s
method) and once the coefficients bi and ci have been determined the estimates
a� may be computed. For b ¼ 1 the three approximations give the values
0.6238 (error 0.0037), 0.6251 (error 0.0050) and 0.6195 (error 0.0006). All es-
timates are very accurate. The quadratic (polynomial) again outperforms the
exponential form and the high accuracy obtained from the Gaussian form
extends to the piecewise implementation. Fig. 4 shows the spatial error dis-

Fig. 4. Two-element three-parameter temperature error profiles at t ¼ 1.
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tribution for the temperature estimates given by the three approximations (the
temperature curves are virtually coincident). The exponential error curve ex-
hibits an undesirable oscillatory behaviour indicating that the solution curve
criss-crosses the analytical solution.

6. Conclusions

The policy of incorporating ‘user knowledge’ to implement HBI solutions
other than polynomial is not straightforward. A very sound understanding is
required of the underlying functions governing the (temperature) profiles for
any particular problem – it was evidently not sufficient to assume that the
solution of the model problem (1)–(5) ‘behaves like exponential decay’. None-
theless, identifying realistic functions, e.g., xe�x2 pays immense dividends in
terms of solution accuracy.
Evidently there is little to rival the piecewise linear approximations in terms

of low computational effort (a single non-linear equation) and general appli-
cability, supporting observations of previous authors [9]. However, for highly
accurate solutions the basic appropriate approximant (in this case aþ becx

2=s2 )
can be extended to a piecewise form. Modern software readily facilitates the
solution of the resulting non-linear systems of algebraic equations.
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