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Abstract

Convergence properties are established for the piecewise linear heat balance integral solution of a bench-
mark moving boundary problem, thus generalising earlier results [Numer. Heat Transfer 8 (1985) 373]. A
convergence rate of O(n ") is identified with minor effects at large values of the Stefan number f (slow inter-
face movement). The correct O(n*l/ %) behaviour for incident heat flux is recovered for § — 0 (pure heat
conduction) as previously found [Numer. Heat Transfer 8 (1985) 373-382]. Numerical illustrations support
the theoretical findings.
© 2005 Elsevier Inc. All rights reserved.
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1. Introduction

Goodman’s heat balance integral (HBI) method [1] is one of many semi-analytical techniques
[2] that may be used to generate functional approximations to transport problems governed by
differential equations. Spatial boundary conditions are satisfied by the selected approximant, to-
gether with an integral form of the governing equation. Goodman constructed quadratic temper-
ature profiles for transient one-dimensional heat transfer both with and without phase change,
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although it should be noted that the original interpretation of the intrinsic boundary conditions
can be improved upon [3].

Since Goodman’s original work [1] several proposals have improved the accuracy of the basic
method. Here we focus upon spatial and temperature sub-division coupled with low-order piece-
wise approximants that circumvent the usual sensitivity of the HBI to the selected approximant
and which ‘flavoured’ research papers from the mid 1970s.

Noble [4] suggested the combination of spatial sub-division and low-order piecewise approxi-
mants as a refinement of the HBI method. Bell [5,6] demonstrated the effectiveness of the ap-
proach using piecewise linear approximants and only a few sub-divisions for problems in plane
and radial geometries. Bell [7] introduced temperature sub-division and the modification was suc-
cessfully applied to the two-phase solidification problem of estimating the penetration depth of
frost [8]. In these papers numerical evidence of convergence is presented, and in 1985 Bell and
Abbas [9] formally established the convergence of a piecewise linear HBI solution to the problem
of pure heat conduction in a semi-infinite medium.

The present work generalises the formal convergence analysis to the set of one-phase melting
problems that is often cited for ‘test purposes’ of which the problem addressed by Bell and Abbas
[9] is a special limiting case.

2. A model problem

The analysis presented in this paper is based upon a dimensionless mathematical description of
the single-phase melting of ice [10],

ou U

ey 0<x<s(t), t>0, (1)
uo,0)=1, t>0; U(x,t)=0, x=s(t), t>0, (2)
U(x,00=0, x>0, 3)
oU ds

—=_B—, x= . 4
=B, x=s(), 1>0 @

Eq. (1) governs the flow of heat in the liquid region, Eq. (2) prescribes the temperature at the fixed
boundary x = 0 and on the moving melt front x = s(¢), and Eq. (3) gives the initial temperature of
the semi-infinite solution domain. The Stefan condition (4) describes the absorption of heat at the
melt front [11] where the Stefan number = L/c(Ty — T,,) is the ratio of latent to sensible heat.
The analytical solution to Egs. (1)—(4) is

o erf(x/2v/1)
U(x,t)—l—w, 0<x<s(t), t=0, (5)
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s(t) =2av/t, =0, (6)

where o is the root of the transcendental equation /zaerf(a)e” 8 = 1.
q

3. Piecewise linear HBI solution

To approximate the solution of the single-phase problem (1)—(4) the interval [0, 5] is sub-divided
into n equal cells of length s/n and the temperature U is approximated at each node x; = is/n by
v; = U(x;,t) where vy = 1 and v, = 0. A piecewise linear profile is chosen,

(x —x;) (Vi1 — v;)

n :
v=uv;+ . , X <x<xp, i=0,...,n—1, (7)

having a piecewise-constant temperature gradient defined by

o n(viy —v;)

no s X <x<xy, i=0,...,n—1, (8)
ov ds
a——ﬁaa x = s(t). 9)
On each cell U is replaced by v and a heat balance integral is constructed from Eq. (1) of the form
Tl Qo ov ov
—dx=— - — 1 =0,...,n— 1. 10
/ ot G M N (10)

Combining Egs. (7)—(10) generates n ordinary differential equations
ds 2% Uiy — 201 + v
S— =
dt 2i + 1 U — Vi1 ’

i=0,...,n—2, (11)

ds 210,
- = ) 12
Sdr (2n — 1)v,_1 + 2np (12)

On equating Egs. (11) and (12), a system of n — 1 non-linear equations in terms of the n — 1

unknown temperatures vy, . ..,0,_1 is produced of the form
Ui:Ui+1_ﬁ(Ui+2_Ui+l)7 i:n_zvn_3a"'707 (13)
where
n+n—1/2 nf
P = 7_/, n= . (14)
n+n—i—1 Un-1

Withi=n—-2and i=n — 3 in Eq. (13),
Up2 = 1),,_1(1 +fn—2)7

Uy—3 = Up—2 _,fn73(vn71 - Un72)

=0 (1 + fusza + fuafu3),
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and continuing the back substitution it is not difficult to show that v; can be expressed as

n—2 n-2 n—(—1 n—i—1 k

Ui = Uy

n+n c—qy T (n+k)!

l=i j=l k=0

Enforcing the condition vy = 1,

n—1
n+17—1/2) L

and eliminating v,_; between Eqgs. (15) and (16) yields
p=- e i=0,...,n— L (17)

At this point we note that the formula obtained by Bell and Abbas [9] for a semi-infinite pure heat
conduction problem was (in the present notation)

n—i—1

n—1/2)F
T

b=t i=0,...n—1

n—1/2)F
>

k=0

The present work introduces 7 (to give Eq. (17)) which is a non-linear function of n that captures
the effect of the melt front s moving with a finite speed. For pure heat conduction [9] f =0 and
n =0 (see Eq. (14)).

For >0 and n> 0, 5 is obtained from a non-linear equation generated by Eq. (16) on replac-
ing v,_; by np/n (see Eq. (14)). Once 1 is determined the v; are found from Eq. (17) and s is esti-
mated from the solution of Eq. (12),

2ny/t n
V2n+2n -1 V2n+2n—1

o* is to be interpreted as an approximation to the melt parameter o. For § =1 and n = 10, 20 and
40 intervals, Table 1 lists values of a*, the mid-domain temperature v(s/2,1) and the incident heat
flux v'(0,1) from

Table 1
Estimates of the melt parameter, the mid-domain temperature and the incident heat flux (piecewise linear HBI with
fp =1 and n intervals)

n o v(s/2,1) v'(0,1)

10 0.6139 0.4575 —0.9038
20 0.6170 0.4552 —-0.9072
40 0.6185 0.4540 —0.9090

Exact 0.6201 0.4528 —0.9108
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ov  n(v —1)

o ) 19

Ox s (19)
It is clear that the selected parameters converge to the analytical values and extrapolation identi-
fies numerical convergence rates of 0.97, 1.01 and 0.94, respectively.

4. Analysis of convergence

In formally establishing the convergent behaviour observed in Table 1, the analysis naturally
includes the entire range of physical problems described by the model (1)-(4), from pure heat con-
duction (f — 0) to slow phase change (f — o). It will be seen that the convergence of the numer-
ical method depends upon f§ and to illustrate the methodology, the behaviour of the incident heat
flux (19), is considered in the limit n — oo.

Combining Egs. (17)—(19) gives the approximate incident heat flux

w _ (n4n—1/2 20)
x|, "2 (=12 .
V2t(n+n— 1)!;::0 )
Defining
m—1 k m—1/2
Z (m—1/2)
()] = 1 = 21

and [12, Eq. 6.5.22] using the identity y(a,z) = (a — 1)p(a — 1,z) — e z*"' (m times), where the
incomplete gamma function v is defined by [12, Eq. 6.5.2]

ya,z) = / e 't ldt,
0
it is a fairly straightforward matter to show that

_ e |202)  v(m+m,2)
omn2) == ) LS @)

Eq. (20) may then be written

ov I(n+n)
R [t 172) o 1/2)] (23)
=0 2t { XY R S }
To examine the behaviour of Eq. (23) as n — oo, several results are required.
e For large m [9]
I(m) = ! [1 + ! + } _ ! [14+0(m™")] (24)
NG 24m - \V2n '



908 F. Mosally et al. | Applied Mathematical Modelling 29 (2005) 903-912

e Combining Pearson’s formula [13]

pm+1,z) = e_’”m’”“/z\/;[l +erf(m> +O(m —1/2)],

where m is large and 0 < z <2m, and Stirling’s formula [12, Eq. 6.1.37]

1

1
~ @ Myym—1/2 -
r(m)~e"m W[le + 3552

+ - -'], m — 00,

with the familiar result

1 m—1/2
lim (1 — —> =e !
m—o0 m

we obtain (for large m) the limiting form

V;Tmz)) ;[H f<m>+0( 1/2)} (25)

Using formula (24) with m = n + n and formula (25) with (i) m=#n and z=n+#n — 1/2 and (ii)
m=n+nand z=n+n — 1/2, the ‘large n° behaviour of the terms appearing in Eq. (23) can be
expressed as

1(n+n)=\%2_n[1+o<nin>], (26)
o)
V<"v";(77)— 1/2) ;{1 —i—erf(\/z_n) +o<\/iﬁ>] (28)

To simplify the last result we note from Eq. (14) that

n—1 k
n=2b —nﬁn'Z—(nJrn_l/z) .

Up—1 N . k=0 (17 + k)‘

The kth term is bounded below by 1 if n > k + 1, which must hold for each term in the summa-
tion. That is

((n+n—1/2)" -
(k)
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and hence

n—1
n+17—1/2)
nlz (n+k)!

k=0

Consequently, > fn* and for large n

T ! k (29)
CV2n+2n—1 2y’

For fixed s and large n

= n — /2o (30)

2¢— JW
and Eq. (28) behaves as
yi,n+n—1/2) 1 1
ool )]

Collecting together the limiting forms (26), (27) and (31), the behaviour of Eq. (23) can be
expressed as

[+ 0() .
Va{i[1+erf() + O(L)| —4[1+0(5)] }

ov .
ox|,_, a

In other words,

ov
Ox

1
—o o Vrterf(a)’

and the numerical estimates of the incident heat flux formally converge to the exact value. A little
algebra shows the rate of convergence to be proportional to (n+ 11)*1/ 2 ie. (n+ ﬁnz)*l/ 2. For
B> 0 (including typical phase change,  ~ 1, and slower processes, large ) the term fn* domi-
natesl/azmd the asymptotic rate is O(n~'). If f=0 (pure heat conduction) the rate drops to
O(n= 7).

Similarly, we may consider the behaviour of the nodal temperature v; as n — oo. Combining
Egs. (17), (21) and (22),

U_(D(n—i,n,n—l—n—l/Z)
o dmynt+n—1/2)
yin+n—1/2) yn+n—in+n—1/2)

n— 00 (32)

i=0,....,.n—1,

— F(’?) F(n_‘_’/’ — i) (33)
yimn+n—=1/2) yn+nn+n-1/2)
I'(n) I'(n+n)

The denominator and first term in the numerator have been considered (see Egs. (27) and (31))
and attention is now focussed on a fixed point (x,#) where
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§<x<u
n

n
Let & = x/2v/t = is/2n/t, where i ~ &,/2(n + 1) as n — oo. From Eq. (25)

y(n+n—z,n+n'—l/2):l - i—1/2
I'(n+n—1i 2 2(n+n—1i)
1 1
=—11 f _ 4
310+ (=) Y
Eq. (33) therefore gives
f(x/2
lim o, = 1 - STE/2V0) (35)
n—00 erf(OC)
for which convergence occurs at a rate proportional to ;1*1/ 2 je.n .

5. Numerical experiments

To provide evidence that theoretically established convergence rates obtained in Section 4 are
observed in practice, we conclude with a few numerical experiments using the piecewise form of
Section 3. The values = 1072,k = 0, 1,2 are chosen to give evidence of behaviour as § — 0 (pure
heat conduction), shown in Table 2. Table 3 summarises results for large 5 (slow phase change).

From Table 2, for moderate values of f3, the expected order of convergence is achieved, i.e.
approximately linear. As f§ approaches zero (implying a latent heat of fusion tending to zero,
and hence pure heat conduction) the order for the incident heat flux reduces to about 0.57 which
is consistent with O(n~" %) as indicated by the theory. The order for the mid-domain temperature
u(s/2,1) appears to increase. This can be explained. For small § the value 5 ~ fn* will not be dom-
inant in the order terms for moderate values of #n. In other words, for small f§ the expected asymp-
totic convergence behaviour will only become apparent for much larger values of n. In fact for the
n-triple [8,16,32] the numerical order of convergence for uv(s/2,1) is 1.650 and for the triple

Table 2

Values of o*,v(s/2,1) and v'(0,1), together with convergence behaviour, as a function of small f

p n=10 n=20 n=40 Exact Order

0.0001 o* 2.149412 2.442779 2.598143 2.760891 0.917
v 0.102912 0.070857 0.059690 0.050820 1.521
v’ —0.544193 —0.552218 —0.557623 —0.564243 0.570

0.01 o 1.665452 1.756491 1.803263 1.850946 0.961
v 0.216905 0.198969 0.190899 0.183366 1.152
v’ —0.553172 —0.560359 —0.564556 —0.569230 0.776

1.0 o* 0.613937 0.616960 0.618502 0.620063 0.972

v 0.457485 0.455156 0.453998 0.452845 1.009
v —0.903820 —0.907202 —0.908965 —0.910777 0.941
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Table 3

Values of o*,v(s/2,1) and v'(0,1), together with convergence behaviour, as a function of large

p n=10 n=20 n =40 Exact Order

10 o* 0.219756 0.219884 0.219950 0.220016 0.964
v 0.494564 0.494262 0.494112 0.493962 1.001
v’ —2.306655 —2.307946 —2.308610 —2.309286 0.960

100 ¥ 0.070585 0.070589 0.070591 0.070593 0.963
v 0.499439 0.499408 0.499393 0.499377 1.000
v —7.093743 —7.094162 —7.094376 —7.094595 0.962

1000 o* 0.022357 0.022357 0.022357 0.022357 0.963
v 0.499944 0.499941 0.499939 0.499938 1.000
v’ —22.367862 —22.367995 —22.368063 —22.368132 0.962

[16,32,64] the order is 1.319. This is consistent with the triple [10,20,40] appearing in Table 2
that gives an order of 1.521—the evidence suggests that the rate O(n ') is achieved for sufficiently
large n.

Table 3 confirms the analysis for a range of increasing values of f, that convergence is linear,
ie. O(n M.

6. Conclusions

The analysis presented here has considered the convergence behaviour of a piecewise linear
implementation of the heat balance integral method applied to a phase-change problem. The
numerically observed rates of convergence have been rigorously established, and earlier ‘special
case’ results [9] generalised. Of course, the analysis also highlights the rather slow convergence
properties of the basic method (compared to the O(n2) expected of a standard finite-difference
solver). An approach that uses a combination of mesh refinement and higher-order piecewise
approximants for improving the convergence rate is currently being examined.
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