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24. Letg € C'[a, b] and p be in (a, b) with g(p) = p and |g'(p)| > 1. Show that there exists a
8 > Osuch thatif 0 < [pg — p| < §, then |pg — p| < |p1 — p]. Thus, no matter how close the
initial approximation py is to p, the next iterate p, is farther away, so the fixed-point iteration

does not converge if py # p.

m
2.3 Newton’s Method

Newton’s (or the Newton-Raphson) method is one of the most powerful and well-known
numerical methods for solving a root-finding problem. There are many ways of introducing
Newton’s method. If we only want an algorithm, we can consider the technique graphically,
as is often done in calculus. Another possibility is to derive Newton’s method as a technique
to obtain faster convergence than offered by other types of functional iteration, as is done
in Section 2.4. A third means of introducing Newton’s method, which is discussed next, is

based on Taylor polynomials.
Suppose that f € C?[a, b]. LetX € [a, b] be an approximation to p such that f'(x) #
0 and |p —~ X| is “small.” Consider the first Taylor polynomial for f(x) expanded about X,

(x —

=2
fRO=Ff@+ -0+ —Z—x—)——f”(s(x)),
where £(x) lies between x and X. Since f(p) = 0, this equation with x = p gives

_ T2
O=f@+(@-0f®+ —(-‘?——zﬂf”(s(p)).

Newton’s method is derived by assuming that since |p — X| is small, the term involving
(p — ¥)? is much smaller, so

0~ fGE)+(p— %) F (B

Solving for p gives

_f®
)

This sets the stage for Newton’s method, which starts with an initial approximation p, and

generates the sequence {p,}.-,, by

PxX

Pn = Pn-1 — J{—(éi:_};);, forn > 1. (2.5)

Figure 2.7 illustrates how the approximations are obtained using successive tangents. (Also
see Exercise 11.) Starting with the initial approximation py, the approximation p; is the
x-intercept of the tangent line to the graph of f at (pg, f(po)). The approximation p; is
the x-intercept of the tangent line to the graph of f at (p1, f(p;)) and so on. Algorithm
2.3 follows this procedure.
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Figure 2.7
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ALGORITHM Newton's

2.3 To find a solution to f(x) = O given an initial approximation py:

INPUT initial approximation pg; tolerance TOL; maximum number of iterations Nj.
OUTPUT approximate solution p or message of failure.
Step1 Seti=1.
Step 2 While i < Ny do Steps 3-6.
Step3 Setp=po— f(po)/f (po). (Compute p;.)

Step4 If |p — pg|l < TOL then
OUTPUT (p); (The procedure was successful.)

STOP.
Step5 Seti=i+1.
Step 6 Set pp = p. (Update pg.)

Step 7 OUTPUT (‘The method failed after N, iterations, Ny =", Np);

(The procedure was unsuccessful.)
STOP. =

The stopping-technique inequalities given with the Bisection method are applicable to

Newton’s method. That is, select a tolerance ¢ > 0, and construct py, ... py until
|lpn — py-1l < &, (2.6)
IpN — PN-1] <& pu #£0, 2.7)

¥24
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Figure 2.8
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or

| f(pn)| < &. (2.8)

A form of Inequality (2.6) is used in Step 4 of Algorithm 2.3. Note that inequality (2.8)
may not give much information about the actual error | py — p|. (See Exercise 14 in Section

2.1)
Newton’s method is a functional iteration technique of the form p, = g(p,-1), for

which

g(Pn-1) = pn_1 — %, for n > 1. (2.9)

In fact, this is the functional iteration technique that was used to give the rapid convergence

we saw in part (e) of Example 3 in Section 2.2.
It is clear from equation (2.9) that Newton’s method cannot be continued if f/(p,_;) =
0 for some n. In fact, we will see that the method is most effective when f” is bounded away

from zero near p.

Suppose we would like to approximate a fixed point of g(x) = cosx. The graph in Figure
2.8 implies that a single fixed-point p lies in [0, 7r /2].

=Y

Table 2.3 shows the results of fixed-point iteration with py = /4. The best we could

conclude from these results is that p = 0.74.
To approach this problem differently, define f(x) = cosx — x and apply Newton’s

method. Since f'(x) = —sinx — 1, the sequence is generated by

COS Pn—1 — DPn-1

A , forn>1.
—~Sin pp—1 — 1

Pn = Pn-1—

With pg = n /4, the approximations in Table 2.4 are generated. An excellent approximation
is obtained with n = 3. We would expect this result to be accurate to the places listed

because of the agreement of p; and py. =
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Table 2.3 Table 2.4

n Pn n Pn

0 0.7853981635 0 0.7853981635
1 0.7071067810 1 0.7395361337
2 0.7602445972 2 0.7390851781
3 0.7246674808 3 0.7390851332
4 0.7487198858 4 0.7390851332
5 0.7325608446

6 0.7434642113

7 0.7361282565

The Taylor series derivation of Newton’s method at the beginning of the section points
out the importance of an accurate initial approximation. The crucial assumption is that the
term involving (p — ¥)? is, by comparison with |p — X|, so small that it can be deleted.
This will clearly be false unless X is a good approximation to p. If py is not sufficiently
close to the actual root, there is little reason to suspect that Newton's method will converge
to the root. However, in some instances, even poor initial approximations will produce
convergence. (Exercises 12 and 16 illustrate some of these possibilities.)

The following convergence theorem for Newton’s method illustrates the theoretical

importance of the choice of py.

Let f € C*[a,b]. If p € [a, b] is such that f(p) = 0 and f'(p) # O, then there exists a
8 > 0 such that Newton’s method generates a sequence {p,}°°, converging to p for any
initial approximation pg € [p — 8, p + 4]. |

Proof The proof is based on analyzing Newton’s method as the functional iteration
scheme p, = g(pn,—1). forn > 1, with

Fx)
fl(x)

Let k be in (0, 1). We first find an interval [p — 8, p + 4] that g maps into itself and for

which |g'(x)| < k,forallx € (p — &, p + 6).
Since f' is continuous and f'(p) # O, part (a) of Exercise 27 in Section 1.1 implies

that there exists a §; > 0, such that f'(x) # Oforx € [p — 8;, p + 81] < [a, b]. Thus, g
is defined and continuous on [p — §;, p + 8;]. Also,

g0 =1— f' ') = fRf"x) _ f)Sf(x)
[f' ()P [f()P

gx)=x—

for x € [p — 81, p + 8], and, since f € C?[a, b], wehaveg € C'[p — &1, p + 6,1
By assumption, f(p) = 0, so

) fp)f"(p)
—] = 0
8P =P
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Since g’ is continuous and 0 < k¥ < 1, part (b) of Exercise 27 in Section 1.1 implies that
there exists a §, with 0 < é < §;, and

Ig'(x)] <k, forall xe[p—35, p+38l.

It remains to show that g maps [ p—38, p+38] into [p—§, p+8]. If x € [p—46, p+4], the
Mean Value Theorem implies that for some number £ between x and p, [g(x) — g(p)| =

12’ (§)llx — pl. So
g(x) — pl = lgx) —g(p)| = 1g'E)lIx — pl <klx —- p| < |x — pl.

Since x € [p — 8, p + 8], it follows that |x — p| < & and that |g(x) — p| < 4. Hence, ¢

maps [p — 8, p + ] into [p — 4, p + 4].
All the hypotheses of the Fixed-Point Theorem are now satisfied, so the sequence

{pn};2,, defined by

f(Pn—l)
Pn = g(Pn-1) = pp—1 — ———, forn>1,
: Pt f’(Pn—l)

converges to p forany pp € [p — 8, p + 6]. o ow

Theorem 2.5 states that, under reasonable assumptions, Newton’s method converges
provided a sufficiently accurate initial approximation is chosen. It also implies that the
constant k that bounds the derivative of g, and, consequently, indicates the speed of con-
vergence of the method, decreases to 0 as the procedure continues. This result is important
for the theory of Newton’s method, but it is seldom applied in practice since it does not tell
us how to determine §. In a practical application, an initial approximation is selected, and
successive approximations are generated by Newton’s method. These will generally either
converge quickly to the root, or it will be clear that convergence is unlikely.

Newton’s method is an extremely powerful technique, but it has a major weakness: the
need to know the value of the derivative of f at each approximation. Frequently, f'(x) is
far more difficult and needs more arithmetic operations to calculate than f (x).

To circumvent the problem of the derivative evaluation in Newton’s method, we intro-

duce a slight variation. By definition,

f’(pn—]) — lim f(x) - f(pn—l).
X—> Py X ~ Dn—i
Letting x = pp—2, We have
fPn2) = fPn-1) _ fPn-1) ~ f(Pn—z).

Pn-2 — Pn—1 Pn—1— Pn-2

f!(pn-l) ~

Using this approximation for f’(p,_;) in Newton’s formula gives

f(pn—l)(pn—l : Pn—2)
n —_— n— il . 2.10

This technique is called the Secant method and is presented in Algorithm 2.4. (See Figure
2.9.) Starting with the two initial approximations py and pi, the approximation p; is the
x-intercept of the line joining (po, f (po)) and (p;, f(p1)). The approximation ps is the
x-intercept of the line joining (p1, f(p1)) and (p2, f(p2)), and so on.




Figure 2.9
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o |

Secant

To find a solution to f(x) = 0 given initial approximations pg and p;:

INPUT initial approximations pg, p;; tolerance 7OL; maximum number of iterations Nj.
OUTPUT approximate solution p or message of failure,

Step1 Seti =2,
qo = f(po);
q1 = f(p1).

Step 2 While i < Ny do Steps 3-6.
Step3 Setp = p) —q1(p1 — po)/(q1 — qo). (Compute p;.)

Step4 1f |p — pi| < TOL then
OUTPUT (p); (The procedure was successful.)

STOP.
Step5 Seti=1i+1.
Step 6 Set po = p1; (Update po, qo, p1,q1.)

qo = 41,
PL=Dp;
q1 = f(p).

Step 7 OUTPUT (‘The method failed after Ny iterations, No =", No);
(The procedure was unsuccessful.) |
STOP. n

The next example involves a problem considered in Example 1, where we used New-
ton’s method with pg = 7 /4.
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Use the Secant method to find a solution to x = cos x. In Example 1 we compared func-
tional iteration and Newton’s method with the initial approximation py = 7 /4. Here we
need two initial approximations. Table 2.5 lists the calculations with py = 0.5, p; = 7 /4,

and the formula

nei — Dn-2)(COS Pp_i — DPn—
Dn = Dn_i — (p 1 Pn 2)( Pn—t Pn 1) ’ for n > 2’

(COS Pn-1 — pn—l) — (COS Pn—2 — pn-—2)

from Algorithm 2.4, n
n Pn

0 0.5

1 0.7853981635

2 0.7363841388

3 0.7390581392

4 0.7390851493

5 0.7390851332

By comparing the results here with those in Example 1, we see that ps is accurate
to the tenth decimal place. The convergence of the Secant method is much faster than
functional iteration but slightly slower than Newton’s method, which obtained this degree
of accuracy with ps. This is generally true. (See Exercise 12 of Section 2.4.)

Newton’s method or the Secant method is often used to refine an answer obtained by
another technique, such as the Bisection method, since these methods require a good first
approximation but generally give rapid convergence.

Each successive pair of approximations in the Bisection method brackets a root p of
the equation; that is, for each positive integer n, a root lies between a, and b, . This implies
that, for each n, the Bisection method iterations satisfy

|
n - < — an - bn y
|pn — Pl 2! |

which provides an easily calculated error bound for the approximations. Root bracketing
is not guaranteed for either Newton’s method or the Secant method. Table 2.4 contains
results from Newton’s method applied to f(x) = cosx — x, where an approximate root
was found to be 0.7390851332. Notice that this root is not bracketed by either pg, p; or py,
p2. The Secant method approximations for this problem are given in Table 2.5. The initial
approximations pp and p; bracket the root, but the pair of approximations p; and p4 fail
to do so.

The method of False Position (also called Regula Falsi ) generates approximations in
the same manner as the Secant method, but it includes a test to ensure that the root is brack-
eted between successive iterations. Although it is not a method we generally recommend,
it illustrates how bracketing can be incorporated.

First choose initial approximations pg and p; with f(po)- f(p1) < 0. The approxima-
tion p, is chosen in the same manner as in the Secant method, as the x-intercept of the line
joining (po, f(po)) and (py, f(p1)). To decide which secant line to use to compute p3, we
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check f(p,) - f(p1). If this value is negative, then p; and p, bracket a root, and we choose
D3 as the x-intercept of the line joining (p;, f(p1)) and (p2, f(p2)). If not, we choose p3
as the x-intercept of the line joining (po, f(po)) and (p2, f(p2)), and then interchange the
indices on pg and p;. In a similar manner, once pj; is found, the sign of f(p3) - f(p2)
determines whether we use p; and ps; or p; and p; to compute p4. In the latter case a rela-
beling of p; and p; is performed. The relabeling ensures that the root is bracketed between
successive iterations. The process is described in Algorithm 2.5, and Figure 2.10 shows
how the iterations can differ from those of the Secant method. In this illustration, the first
three approximations are the same, but the fourth approximations differ.

Figure 2.10

Secant method Method of False Position

&
y=f(x) y =fx)

ALGORITHM Method of False Position
2.5 To find a solution to f(x) = 0 given the continuous function f on the interval [pg, p1]

where f(pg) and f(p;) have opposite signs:

INPUT initial approximations pg, p;; tolerance TOL; maximum number of iterations Nj.
OUTPUT approximate solution p or message of failure.

Step1 Seti =2;
g0 = f(po);
q1 = f(p1).
Step 2 Whilei < Ny do Steps 3-7.
Step3 Set p = p1 — qi1(p1 — po)/(q1 — qo). (Compute p;.)

Step4 If|p — pi| < TOL then
OUTPUT (p); (The procedure was successful.)
STOP.
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Step5 Seti =i+ 1;
q = f(p).
Step 6 Ifqg-q; < 0thenset py = py;
do = 41.
Step 7 Set p; = p;
q1 =4q.
Step 8 OUTPUT (‘Method failed after Ny iterations, Ny =", Np);

(The procedure unsuccessful.)
STOP. -

EXAMPLE 3 Table 2.6 shows the results of the method of False Position applied to f(x) = cosx — x
with the same initial approximations we used for the Secant method in Example 2. Notice
that the approximations agree through p; and that the method of False Position requires an

additional iteration to obtain the same accuracy as the Secant method. =
Table 2.6 " D,

0 05

1 (0.7853981635

2 0.7363841388

3 0.7390581392

4 0.7390848638

5 0.7390851305

6 0.7390851332

The added insurance of the method of False Position commonly requires more calcula-
tion than the Secant method, just as the simplification that the Secant method provides over
Newton’s method usually comes at the expense of additional iterations. Further examples
of the positive and negative features of these methods can be seen by working Exercises

13 and 14.

|
EXERCISE SET 23

1. Let f(x) = x* — 6 and py = 1. Use Newton’s method to find p,.
Let f(x) = —x® — cosx and py = —1. Use Newton’s method to find p,. Could p; = 0 be
used?
3. Let f(x) = x*— 6. With py = 3 and p; =2, find ps.
a. Use the Secant method.
b.  Use the method of False Position.
¢.  Which of (a) or (b) is closer to +/6?
4, Let f(x) =—x3—cosx. With pp = —1 and p; = 0, find ps.
a. Use the Secant method. b. Use the method of False Position.

frn

L ELV I B N AR Y
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10.

11.

12.

13.

14.

Use Newton’s method to find solutions accurate to within 10~* for the following problems.
a. x*—-2x>-5=0, {1,4] b. x*43x2-1=0, [-3, -2]

¢. x—cosx=0, [0, 7/2] d x—-08-02sinx =0, [0, /2]
Use Newton’s method to find solutions accurate to within 10~° for the following problems.
e* +27F+2cosx—6=0 forl<x=<2

In(x —1)+cos(x —1)=0 forl3<x=<2

2xcos2x —(x —2)2 =0 for2<x<3and3<x<4

(x =2 —Inx=0 forl<x<2ande <x <4

e —3x?=0 for0<x<land3<x <35

sinx —e* =0 for0<x<l13<x<4and6<x<7

Repeat Exercise 5 using (i) the Secant method and (ii) the method of False Position.
Repeat Exercise 6 using (1) the Secant method and (ii) the method of False Position.

Use Newton's method to approximate, to within 10~ the value of x that produces the point
on the graph of y = x? that is closest to (1, 0). [Hint: Minimize [d(x)]?, where d(x) represents
the distance from (x, x2) to (1, 0).]

Use Newton’s method to approximate, to within 10™*, the value of x that produces the point
on the graph of y = 1/x that is closest to (2, 1).

The following describes Newton’s method graphically: Suppose that f'(x) exists on [a, b]
and that f'(x) # O on [a, b]. Further, suppose there exists one p € [a, b] such that f(p) =
0, and let pg € [a, b] be arbitrary. Let p; be the point at which the tangent line to f at
(pu, f(po)) crosses the x-axis. For each n > 1, let p, be the x-intercept of the line tangent to
f at (pa—y, f(pa-1)). Derive the formula describing this method.

Use Newton’s method to solve the equation

- e B T

1 1 1
0= 5 +Zx2-xsinx— —2—0032x, with pg = %

Iterate using Newton’s method until an accuracy of 107> is obtained. Explain why the result
seems unusual for Newton’s method. Also, solve the equation with pg = 5r and py = 107.

The fourth-degree polynomial
f(x) =230x" +18x° +9x*> — 221x — 9

has two real zeros, one in [—1, 0] and the other in [0, 1}. Attempt to approximate these zeros
to within 1075 using the

a. Method of False Position

b. Secant method

¢. Newton’s method

Use the endpoints of each interval as the initial approximations in (a) and (b) and the midpoints
as the initial approximation in (c).

The function f(x) = tanx — 6 has a zero at (1 /) arctan6 = (0.447431543. Let py = 0 and

p1 = 0.48, and use ten iterations of each of the following methods to approximate this root.
Which method is most successful and why?

a. Bisection method
b. Method of False Position
¢. Secant method
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15.

16.

17.

18.
19.

20.

21.

22.

23.

The iteration equation for the Secant method can be written in the simpler form

Pn = f(pn-I)Pn—Z - f(Pn_2)p,,_|
" f(Pn-1) — f(Pn2)

Explain why, in general, this iteration equation is likely to be less accurate than the one given

in Algorithm 2.4.

The equation x> — 10cosx = 0 has two solutions, £1.3793646. Use Newton’s method to

approximate the solutions to within 10~ with the following values of py.

a. po= —100 b. Po = -50 C. po= -25

d po=25 e. pg=>50 f. po=100

Use Maple to determine how many iterations of Newton’s method with pg = 77/4 are needed .

to find a root of f(x) = cosx — x to within 1071,

Repeat Exercise 17 with py = 3, p; = %, and the Secant method.

The function described by f(x) = In(x? + 1) — €%* cos 7w x has an infinite number of zeros.

a. Determine, within 10~¢, the only negative zero.

b. Determine, within 107, the four smallest positive zeros.

¢. Determine a reasonable initial approximation to find the nth smallest positive zero of f.
{Hint: Sketch an approximate graph of f.]

d. Use part (c) to determine, within 1075, the 25th smallest positive zero of f.

Find an approximation for A, accurate to within 10~#, for the population equation

1,564,000 = 1,000,000¢* + j4—-?--5-)1-@(63’“ - 1),

discussed in the introduction to this chapter. Use this value to predict the population at the end
of the second year, assuming that the immigration rate during this year remains at 435,000
individuals per year.

The sum of two numbers is 20. If each number is added to its square root, the product of the
two sums is 155.55. Determine the two numbers to within 10~*.

The accumulated value of a savings account based on regular periodic payments can be deter-
mined from the annuity due equation,

A= ?[(1 + )" — 1].

In this equation, A is the amount in the account, P is the amount regularly deposited, and §
is the rate of interest per period for the n deposit periods. An engineer would like to have a
savings account valued at $750,000 upon retirement in 20 years and can afford to put $1500
per month toward this goal. What is the minimal interest rate at which this amount can be
invested, assuming that the interest is compounded monthly?

Problems involving the amount of money required to pay off a mortgage over a fixed period
of time involve the formula

A= ?—[1 -1+

known as an ordinary annuity equation. In this equation, A is the amount of the mortgage,
P is the amount of each payment, and i is the interest rate per period for the n payment
periods. Suppose that a 30-year home mortgage in the amount of $135,000 is needed and that
the borrower can afford house payments of at most $1000 per month. What is the maximal
interest rate the borrower can afford to pay?
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24.

25.

27.

28.

29.

A drug administered to a patient produces a concentration in the blood stream given by c(t) =
Ate~'/* milligrams per milliliter, ¢ hours after A units have been injected. The maximum safe

concentration is 1 mg/ml.

a. What amount should be injected to reach this maximum safe concentration, and when
does this maximum occur?

b. An additional amount of this drug is to be administered to the patient after the concen-
tration falls to 0.25 mg/ml. Determine, to the nearest minute, when this second injection
should be given.

c. Assume that the concentration from consecutive injections is additive and that 75% of
the amount originally injected is administered in the second injection. When is it time for
the third injection?

Let f(x) = 3>+ —7.5%,

a. Use the Maple commands solve and £solve {0 try to find all roots of f.

b. Plot f(x) to find initial approximations to roots of f.

c¢. Use Newton’s method to find rdots of f to within 10716,

d. Find the exact solutions of f(x) = O algebraically.

Repeat Exercise 25 using f(x) = 2%t _ 3. L
The logistic population growth model is described by an equation of the form

P,

P(t) = ,
@) 1 —ce™

where P, ¢, and k > 0 are constants, and P(r) is the population at time ¢. P, represents the
limiting value of the population since lim,_,, P(t) = P.. Use the census data for the years
1950, 1960, and 1970 listed in the table on page 104 to determine the constants P;, ¢, and
k for a logistic growth model. Use the logistic model to predict the population of the United
States in 1980 and in 2010, assuming ¢ = 0 at 1950. Compare the 1980 prediction to the actual
value.

The Gompertz population growth model is described by

kt

P(t) = Pre™™

where P, ¢, and k > 0 are constants, and P(¢) is the population at time ¢. Repeat Exercise 27
using the Gompertz growth model in place of the logistic model. |
Player A will shut out (win by a score of 21-0) player B in a game of racquetball with proba-

bility
P—1+p( p )21
T2 \1—p+p2) "’

where p denotes the probability A will win any specific rally (independent of the server). (See
[Keller, J], p. 267.) Determine, to within 10~3, the minimal value of p that will ensure that A

will shut out B in at least half the matches they play.
In the design of all-terrain vehicles, it is necessary to consider the failure of the vehicle when
attempting to negotiate two types of obstacles. One type of failure is called hang-up failure
and occurs when the vehicle attempts to cross an obstacle that causes the bottom of the vehicle
to touch the ground. The other type of failure is called nose-in failure and occurs when the
vehicle descends into a ditch and its nose touches the ground.

The accompanying figure, adapted from [Bek], shows the components associated with
the nose-in failure of a vehicle. In that reference it is shown that the maximum angle o that




