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9. Let A be an eigenvalue of the n x n matrix A and x 7 0 be an associated eigenvector.
a. Show that X is also an eigenvalue of A’.
b. Show that for any integer £ > 1, A* is an eigenvalue of A* with eigenvector x.
Show that if A~! exists, then 1/A is an eigenvector of A™! with eigenvector x.
Generalize parts (b) and (c) to (A~1)* for integers k > 2.
e. Given the polynomial g(x) = go + q;x + --- + qxx*, define g(A) to be the matrix
q(A) = gol +q1 A+ - -+ g A*. Show that g(}) is an eigenvalue of g (A) with eigenvector
X.
f. Leta # A be given. Show that if A — a7 is a nonsingular, then 1/(A — «) is an eigenvalue
of (A — al) ! with eigenvector x.
10. Show that if A is symmetric, then ||A]|, = p(A).

11. In Exercise 11 of Section 6.3, we assumed that the contribution a female beetle of a certain
type made to the future years’ beetle population could be expressed in terms of the matrix

& o

0 0 6
A=|1 0 0],
0 1 o0

where the entry in the ith row and jth column represents the probabilistic contribution of a

beetle of age j onto the next year’s female population of age i.

a. Does the matrix A have any real eigenvalues? If so, determine them and any associated
eigenvectors.

b. If a sample of this species was needed for laboratory test purposes that would have a
constant proportion in each age group from year to year, what criteria could be imposed
on the initial population to ensure that this requirement would be satistied?

12. Find matrices A and B for which p(A + B) > p(A) + p(B). (This shows that p(A) cannot
be a matrix norm.)
13.  Show that if || - {[ is any natural norm, then (1/||A™1||) < |A| < [|A]|| for any eigenvalue A of

the nonsingular matrix A.

]
7.3 lterative Techniques for Solving Linear Systems

In this section we describe the Jacobi and the Gauss-Seidel iterative methods, classic meth-
ods that date to the late eighteenth century. Iterative techniques are seldom used for solving
linear systems of small dimension since the time required for sufficient accuracy exceeds
that required for direct techniques such as Gaussian elimination. For large systems with a
high percentage of 0 entries, however, these techniques are efficient in terms of both com-
puter storage and computation. Systems of this type arise frequently in circuit analysis and
in the numerical solution of boundary-value problems and partial-differential equations.

An iterative technique to solve the n x n linear system Ax = b starts with an initial
approximation x¥ to the solution x and generates a sequence of vectors {x®}>°  that
converges to X. Iterative techniques involve a process that converts the system Ax = b into
an equivalent system of the form x = T'x + ¢ for some fixed matrix 7" and vector c.
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After the initial vector X is selected, the sequence of approximate solution vectors is
generated by computing

x® = rx®-D 4 ¢

for each k¥ = 1,2, 3,.... This result should be reminiscent of the fixed-point iteration
studied in Chapter 2.

EXAMPLE 1 The linear system Ax = b given by

Ei: 10x;— x4 2x3 = 0,
Ery: —xi+1lxx—  x3+43x4 =25,
Eiy: 2x1— x2+410x3 ~ x4 =-—11,
Es: 3x; — x3+8x4 =15

has the unigue solution x = (1, 2, —1, 1)*. To convert AX = b to the form x = Tx + ¢,
solve equation E; for x;, foreachi = 1, 2, 3, 4, to obtain

| 1 3
Xy = 1072~ 5% +§,
1 1 3 25
= i +ﬁx3—ﬁx4+l—l-,
1 1 I 11
x3=—§x1+“16x2 +"1"6-’C4—'ia,
3 1 15
X4 = — §X2+ gX3 -{-?.
Then Ax = b can be rewritten in the form x = Tx + ¢, with
"0 -5 07 BN
L 9o L _3 23
r=| 0 T T e e=| 0,
5 70 10 10
Lo -3 1 o | 2

For an initial approximation, we let X = (0, 0, 0, 0)*. Then xV is given by

| 1 3
(1) (0) (0) —
1 1 3 25
(N (0) (0) ()]
x2 = ﬁxl -+ ﬁx3 — Hx4 ﬁ = 22727,
1 1 1 11
x:g}) = ——gxfo) -+ I_OL‘EO) + Exio) — E = —11000,
3 1 15
xﬁl) = — §x§0) + -éxgo) -+ 3 = 1.8750.

Additional iterates, x® = (x*, x¥, x{¥, xF'y’, are generated in a similar manner and are

presented in Table 7.1.



7.3 literative Techniques for Solving Linear Systerms 439

Table 71
k 0 1 2 3 4 5 6 7 8 9 10

¥ 0000 06000 10473 09326 1.0152 0.989%0 1.0032 09981 1.0006 0.9997  1.0001
P 00000 22727 17159 2053 19537 20114 1.9922 20023 1.9987 2.0004  1.9998
9 00000 —1.1000 —0.8052 —1.0493 -09681 —1.0103 —0.9945 —1.0020 —0.9990 —1.0004 -—0.9998
x® 00000 18750 0.8852 1.1309 09739 1.0214 09944 1.0036 0.9989 1.0006  0.9998

The decision to stop after ten iterations was based on the criterion

x40 —x®j,  8.0x 107
x|,  1.9998

In fact, ||x1? — x}|, = 0.0002. 0

<1073,

The method of Example 1 is called the Jacobi iterative method. It consists of solving
the ith equation in Ax = b for x; to obtain (provided a;; # 0)

n
a,-jxj) bi .
xX; = — + —, fori=1,2,...,n
! Z( aii ai;

j=1
j#i

and generating each x* from components of xX*~ for k > 1 by

> e (‘—afjx;k_l)) + b;
_ Tz

ajj

x(k)

, fori=1,2,...,n. (7.4)

The method is written in the form x* = Tx*~D 4 ¢ by splitting A into its diagonal
and off-diagonal parts. To see this, let D be the diagonal matrix whose diagonal entries are
those of A, —L be the strictly lower-triangular part of A, and —U be the strictly upper-
triangular part of A. With this notation,

any a1z - din
az azp -+ G
A= _
| Qnl  An2 Qnn |
is split into
ra“ 0:' ........ 0 . ™~ 0 ................ (.)_ —O _aIZ ...... __aln -
O a22 . ., —azl . .
A= SURRRTR - = o
N - 0 - —Ap—1,n
B O ........ ‘.‘ 0 ann—- ___anl ..... _an n—l ' 0 _0 .............. ; :0 _
=D-L-U.

The equation Ax = b, or (D — L — U)x = b, is then transformed into

Dx = (L + U)x + b,
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and, if D! exists, that is, if a;; # 0 for each i, then
x=DYL+U)x+ Db
This results in the matrix form of the Jacobi iterative technique:
xXO =DM +U)x* Y+ Db, k=1,2,.... (7.5)

Introducing the notation T; = D~!(L + U) and ¢; = Db, the Jacobi technique has the
form

x® — zj(k—l) +¢;. (7.6)

In practice, Eq. (7.4) is used in computation and Eq. (7.6) for theoretical purposes.
Algorithm 7.1 implements the Jacobi iterative technique.

Jacobi lterative

To solve Ax = b given an initial approximation x©@:

INPUT the number of equations and unknowns n; the entries g;;, 1| < i, j < n of the
matrix A; the entries b;, | < i < n of b; the entries X0;, 1 < i < n of X0 = x©;

tolerance T7OL; maximum number of iterations N.

OUTPUT the approximate solution x, . . ., x, or a message that the number of iterations
was exceeded.

Step1 Setk = 1.

. Step 2 While (k < N) do Steps 3-6.

Step3 Fori=1,...,n
— > i=1(ai; X 0;) + b
J#i
aii
Step 4 If ||x — XO|| < TOL then OUTPUT (x4, ..., X,);
(The procedure was successful.)
STOP.

set x; =

Step5 Setk=k+1.
Step6 Fori=1,...,nset XO; = x,.

Step 7 OUTPUT (‘Maximum number of iterations exceeded’);
(The procedure was successful.)
STOP. n

Step 3 of the algorithm requires that a;; # 0, foreachi = 1,2, ..., n. If one of the a;;
entries is O and the system is nonsingular, a reordering of the equations can be performed
so that no a;; = 0. To speed convergence, the equations should be arranged so that a;; is as
large as possible. This subject is discussed in more detail later in this chapter.
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Another possible stopping criterion in Step 4 is to iterate until

”x(k) - X(k—l)”
|x® |

is smaller than some prescribed tolerance. For this purpose, any convenient norm can be

used, the usual being the /,, norm,

A possible improvement in Algorithm 7.1 can be seen by reconsidering Eq. (7.4).
The components of x*~! are used to compute x°. Since, for i > 1, x*, ... x®
have already been computed and are probably better approximations to the actual solu-
(k)

tions xiy, ... , xX;—1 than xl(k*]) e xi(ﬁ'l'l), it seems more reasonable to compute x;"’ using
these most recently calculated values. That is, we can use
i—1 n
*) k—1)
- Z(aijxj ) — Z (aijx{ ) + by
— e
x0 = : : (1.7)

i
ai;

foreachi =1, 2, ..., n, nstead of Eq. (7.4). This modification is called the Gauss-Seidel
iterative technique and is illustrated in the following example.

The linear system given by

10x1 - X2 + 2.X3 == 6,
—x; + 11xy — x3 + 3x4 = 25,
2x1-- X2+10.X'3-- X4:-—11,

3x— x3+8x54=15

was solved in Example 1 by the Jacobi iterative method. Incorporating Eq. (7.7) into Al-
gorithm 7.1 gives the equations to be used foreachk =1, 2, ...,

x® = T%xz(k—l) N éxék_l) N 2—,
S l_llxgk) + %xékul) - 131 x %D 4 %_?
xy = “éxf‘) + %xék} 4 TIBxik—U %,
xjk) — %xék) + éxék) N };

Letting x® = (0,0, 0,0), we generate the iterates in Table 7.2.

k 0 1 2 3 4 5
x® 0.0000 0.6000 1.030 1.0065 1.0009 1.0001
x 0.0000 2.3272 2.037 2.0036 2.0003 2.0000
x 0.0000 —0.9873 —1.014 —1.0025 —1.0003 —1.0000

xP 0.0000 0.8789 0.9844 0.9983 0.9999 - 1.0000
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Since

Ix® —x%los _ 0.0008

= =4 x 1074,
X [loo 2000

x® is accepted as a reasonable approximation to the solution. Note that Jacobi’s method
in Example 1 required twice as many iterations for the same accuracy. -

To write the Gauss-Seidel method in matrix form, multiply both sides of Eq. (7.7) by

“a;; and collect all kth iterate terms, to give

k (k (k) (k—1) k—1
ailxl( : + aiax, : + o+ X = =G Xy amx,ﬁ : + b,
foreachi =1, 2, ..., n. Writing all n equations gives

(k) k—1) (k—1) —
aix, = —apx, = —apx; == apxy Y+ by,

(k) (k) (k—1) -

k k
anixf ) + an2x§ ) + 4 annxfsk) = bnv

with the definitions of D, L, and U given previously, we have the Gauss-Seidel method
represented by

(D — L)x% = yx*D +p

or

x® = (D -L) Uux* Y+ Md-L)"b, foreachk=1,2,.... (7.8)
Letting 7, = (D — L)~'U and ¢, = (D — L)~ 'b, the Gauss-Seidel technique has the form
x® = T x*D 1 ¢, (7.9)

For the lower-triangular matrix D — L to be nonsingular, it is necessary and sufficient that
a;; 7 0,foreachi =1,2,...,n.
Algorithm 7.2 implements the Gauss-Seidel method.

Gauss-Seidel lerative

To solve Ax = b given an initial approximation x®:

INPUT the number of equations and unknowns n; the entries @;;, | < i, j < n of the
matrix A; the entries b;, 1 < i < n of b; the entries XO;, 1 < i < n of X0 = x;
tolerance TOL; maximum number of iterations N.

OUTPUT the approximate solution x1, . . ., x, or a message that the number of iterations
was exceeded.
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Step 1 Setk = 1.
Step 2 While (k < N) do Steps 3-6.
Step3 Fori=1,....n

-1
— iafjx_f — zn: a,-jXOJ.- +b1
j=l1

J=i+l

set x; =
ai;

Step 4 If |[x — XO|{ < TOL then OUTPUT (x,, ....x,):

(The procedure was successful.)

STOP.
Step5 Setk =k 4+ 1.
Step6 Fori=1,....nset XO; = x;.

Step 7 OUTPUT (‘Maximum number of iterations exceeded’);
(The procedure was successful.)
STOP. m

The comments following Algorithm 7.1 regarding reordering and stopping criteria also

apply to the Gauss-Seidel Algorithm 7.2.
The results of Examples 1 and 2 appear to imply that the Gauss-Seidel method is

supernior to the Jacobi method. This 1s almost always true, but there are linear systems for
which the Jacobi method converges and the Gauss-Seidel method does not (see Exercises

9 and 10).
To study the convergence of general iteration techniques, we consider the formula

0 = rx%* D ¢ foreachk=1,2.....

where x'? is arbitrary.

If the spectral radius p(T') satisfies p(T) < 1, then (] — T)~! exists, and

o0
(I——T)*I:1+T+T?'+---~_—ZTJ'. =
=0

Proof Since Tx = Ax is true precisely when (I — T)x = (I — A)X, we have 4 as an
eigenvalue of T precisely when | — A is an eigenvalue of / — 7. But |A| << p(7T) < 1, s0
). = 1is not an eigenvalue of T, and 0 cannot be an eigenvalue of / — 7. Hence, (1 — T) !

ex1sts.
letS, =1 +T+T*+ .-+ T" Then

(I—T)S :(1+T+T2+"'+Tm)—(T+T2+---—{—T'”+l):]—T"'HH~
and, since T is convergent, the result at the end of Section 7.2 implies that

lim (I — T)S,, = lim (I — T™"YH = I.
m-—=> 0

m-—>00

Thus,(]-T)“l=1imm_+c,osm=1+T+T2+---=Zj.’_‘;0rf. = x =
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For any x© e R”, the sequence {x*}*, defined by
x® = 7x%D 4 ¢ foreachk > 1, (7.10)

converges to the unique solution of x = Tx + cif and only if p(7T) < 1. [

Proof First assume that p(7') < 1. Then,

x® = Tx%*V 4 ¢
=T{Tx*?+e)+¢
= T?x%2 +(T + De

= T*O 4 (T*' 4 ... + T + De.
Since p(7T) < 1, the matrix T is convergent and

lim T"x©@ = ¢.

k—o00

Lemma 7.18 implies that

lim x*® = lim T*x© 4+ (Z Tf') c=0+U-T)le=(-T)"c
k—o0 k— 00 ‘=0

Hence, the sequence {x*)} converges to the vectorx = (I — T) lcand x = Tx + c.
To prove the converse, we show that for any z € R", we have limy_, », T ky = 0, By

Theorem 7.17, this is equivalent to p(7T') < 1.
Let z be an arbitrary vector, and x be the unique solution to x = T'x + c¢. Define
x® =x — 1z and, fork > 1, x% = Tx*V 4 ¢. Then {x*’} converges to x. Also,

x—x% = (I'x+¢) — (Tx(k_l) + c) =T (x - x(k—l)) i

SO

x-xPV =T (x-x*)=1*(x-x*?)=...= T* (x — x®) = Tz

Hence limyg oo 772 = limyg, 00 7% (x — x0) = limy, o0 (x — x*) = 0.
Since z € R” was arbitrary, this implies that 7 is a convergent matrix and that

p(T) < 1. = = =

The proof of the following corollary is similar to the proofs in Corollary 2.4. It is
considered in Exercise 11.

If || 7| < 1 for any natural matrix norm and c is a given vector, then the sequence {x*’}22
defined by x® = Tx*~V 4 ¢ converges, for any x@ € R”, to a vector x € R", and the

following error bounds hold:
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(i) (Ix —x®| < T x© —x|;

- Tk
@) lx ~x® = {5 Ix® —x@). e

We have seen that the Jacobi and Gauss-Seidel iterative techniques can be written
x® = zj(k“” +¢; and x%® = Tgx("_” + ¢,

using the matrices
;=D '(L+U) and T,=(D-L)'U.

If o(T;) or p(T,) is less than 1, then the corresponding sequence {x*)}° , will converge to
the solution x of Ax = b. For example, the Jacobi scheme has

x® =D N L+ U)x* V4 D7,
and, if {x(k)}f(";o converges to X, then
x=D""L+U)x+ Db
This implies that
Dx = (L%‘-U)x+b and (D—L—-U)x=b.

Since D — L — U = A, the solution x satisfies AX = b.
We can now give easily verified sufficiency conditions for convergence of the Jacobi
and Gauss-Seidel methods. (To prove convergence for the Jacobi scheme, see Exercise 12,

and for the Gauss-Setdel scheme, see [Or2, p. 120].)

If A is strictly diagonally dominant, then for any choice of x”, both the Jacobi and Gauss-

Seidel methods give sequences {x*}°  that converge to the unique solution of Ax = b.
0

The relationship of the rapidity of convergence to the spectral radius of the 1iteration
matrix 7" can be seen from Corollary 7.20. Since the inequalities hold for any natural matrix
norm, it follows from the statement after Theorem 7.15 that

Ix% — x| & p(T)*x@ —x|. (7.11)

Thus, it is desirable to select the iterative technique with minimal po(7T) < 1 for a partic-
ular system Ax = b. No general results exist to tell which of the two techniques, Jacobi
or Gauss-Seidel, will be most successful for an arbitrary linear system. In special cases,
however, the answer is known, as is demonstrated in the following theorem. The proof of
this result can be found in [Y, pp. 120-127].

(Stein-Rosenberg)
Ifa;; <0, foreachi # janda; > 0, foreachi =1, 2, ..., n, then one and only one of
the following statements holds:
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a. 0=<p(Ty) <p(T;) <1

b. 1< p(T)) < p(Ty);

c. p(I;) =p(T,) =0

d. po(T)) =p(T,) =1. O

For the special case described in Theorem 7.22, we see from part (a) that when one
method gives convergence, then both give convergence, and the Gauss-Seidel method con-
verges faster than the Jacobi method. Part (b) indicates that when one method diverges then
both diverge, and the divergence is more pronounced for the Gauss-Seidel method.

Since the rate of convergence of a procedure depends on the spectral radius of the
matrix associated with the method, one way to select a procedure to accelerate conver-
gence is to choose a method whose associated matrix has minimal spectral radius. Before
describing a procedure for selecting such a method, we need to introduce a new means of
measuring the amount by which an approximation to the solution to a linear system differs
from the true solution to the system. The method makes use of the vector described in the

following definition.

Suppose X € R” is an approximation to the solution of the linear system defined by Ax = b.
The residual vector for X with respect to this system is r = b — AX. n

In procedures such as the Jacobi or Gauss-Seidel methods, a residual vector 1s asso-
ciated with each calculation of an approximation component to the solution vector. The
object is to generate a sequence of approximations that will cause the residual vectors to

converge rapidly to zero. Suppose we let

ky __ (&) (k) k)t
ri H(Iz’rQI""’ m)

denote the residual vector for the Gauss-Seidel method corresponding to the approximate
solution vector xfk) defined by

k K (k k k-1 k—1)
E) (x() (),... x:_)l,x.( )...,x,gk Iy

The mth component of r( '

i—1 n

r(nkt) = b Zamjx( ) Zam;x(k i (7.12)

J:l j—-!

or, equivalently,

i—1

n
k k k-1 (k—1)
( ) = by, E amjx( ) E amjxﬁ. ) — Qi X, ,

j=i+l
foreachm=1,2,...,n.
In particular, the ith component of rgk) 1S

i—1 n

k k k—1 k-1
):--b,-——Za,Jx() Z a,,xﬁ )—a”x( ),

j=1 j=it1
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50

i—1

a;ixFV Za,J . Z agx V. (7.13)

j=i+1

Recall, however, that in the Gauss-Seidel method, xl.(k) 18 chosen to be

1 i—1 H

==Y ax® = 3 agxN (7.14)

dii j=1 j=it1

so Eq. (7.13) can be rewritten as

(k—1)

dij X; +r( ) _aux(k)-

Consequently, the Gauss-Seidel method can be characterized as choosing xfk) to satisfy

k k—1 ¥ ‘(‘k)
= T (7.15)
djj
We can derive another connection between the residual vectors and the Gauss-Seidel

technique. Consider the residual vector r”‘)l, associated w1th the vector xm = (k o

xl.(k),xfi]”, ..., x&=1" By (7.12), the ith component of r'*) Vs
i
® *y _ (k-1)
Tijar = bi — Zau Z: aijX;
j=1 J=it1
i-1 L n —1)
{ - (k
= b; — Zaijxj - Z aij-xj(- — Qi X; '
j=1 j=it]

Equation (7.14) implies that rI P +1 = 0. In a sense, then, the Gauss-Seidel technique is also

characterized choosing x, +)1 in such a way that the ith component of rf +) | 18 zero.
Choosing xUc )1 so that one coordinate of the resudual vector is zero, however, is not the

most efficient way to reduce the norm of the vector r . If we modify the Gauss-Seidel
procedure, as given by Eq. (7.15), to

(k)
. v
1 = D i (7.16)

for certain choices of positive w, we can reduce the norm of the residual vector and obtain

significantly faster convergence.

Methods involving Eq. (7.16) are called relaxation methods. For choices of w with
0 < w < 1, the procedures are called under-relaxation methods and can be used to
obtain convergence of some systems that are not convergent by the Gauss-Seidel method.
For choices of w with 1 < w, the procedures are called over-relaxation methods, which
are used to accelerate the convergence for systems that are convergent by the Gauss-Seidel
technique. These methods are abbreviated SOR, for Successive Over-Relaxation, and are
particularly useful for solving the linear systems that occur in the numerical solution of
certain partial-differential equations.
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Betore illustrating the advantages of the SOR method, we note that by using Eq. (7.13),
Eq. (7.16) can be reformulated for calculation purposes to

i—1 n
k k—1 w k k—1
R LB W Ep sl
i j=I i=i+1
To determine the matrix of the SOR method, we rewrite this as
. i—1 n
k k \ k—1 k—1
a,-l-x,-( ) +a)Za,-jx§ ) = (1 — a))af,fxf '—w Z al-jxj(- )+ wb;,
j= j=i+1
so that in vector form, we have
(D - wl)x* =[(1 -w)D +wU%* Y +0b
or

X = (D —wL) (1 ~w)D + wU* D + u(D — oLy 'b. (717

IfweletT, = (P—wl) '[(1-w)D+wU]and ¢, = w(D —wL) 'b, the SOR technique
has the form

x® = 1.x* D 4 ¢ (7.18)

The linear system Ax = b given by

4xy 4+ 3x3 = 24,
3X1 + 4)62 - X3 = 30,
~ X2 +4x3 = —24,

has the solution (3, 4, —5)'. The Gauss-Seidel method and the SOR method withw = 1.25
will be used to solve this system, using x¥ = (1, 1, 1)’ for both methods. For each k =
1,2,..., the equations for the Gauss-Seidel method are

= —0.75xF" 16,
2 = —0.75x® +0.25x 7V + 7.5,
X =025xH — 6,
and the equations for the SOR method with w = 1.25 are
x® = ~0.25x* Y - 09375V 4 7.5,
= —0.9375x" — 0.25x) 7" + 0.3125x 7V 4+ 9.375,
¥ = 031252 - 0.25x 7Y - 7.5,

The first seven iterates for each method are listed in Tables 7.3 and 7.4. For the iterates
to be accurate to seven decimal places, the Gauss-Seidel method requires 34 iterations, as
opposed to 14 iterations for the over-relaxation method with o = 1.25. |
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Table 73 Gauss-Seidel

k 0 1

2 3 4 5 6 7

P 5250000  3.1406250  3.0878906  3.0549316  3.0343323 3.0214577  3.0134110
PO 3.812500  3.8828125 39267578 3.9542236  3.9713898  3.9821186  3.9888241
M1 5046875 50292969 50183105 —5.0114441 50071526 —5.0044703  —5.0027940

Table 74 SOR withw = 1.25

k 0 1

2 3 4 5 6 7

k
<

vl

6.312500 2.6223145 3.1333027 2.9570512 3.0037211 2.9963276 3.0000498

P 3.5195313 3.9585266  4.0102646  4.0074838 4.0029250  4.0009262  4.0002586
xék) 1 —6.6501465 —4.6004238 -—-5.0966863 —4.9734897 —5.0057135 —4.9982822 —5.0003486
The obvious question to ask is how the appropriate value of w is chosen. Although no

complete answer to this question is known for the general n x n linear system, the following

results can be used in certain situations.
Theorem 724 (Kahan)

If a;; # 0, foreachi = 1,2,...,n, then p(7,) = |w — 1|. This implies that the SOR

method can converge only 1f 0 < w < 2. n

The proof of this theorem is considered in Exercise 13. The proof of the next two

results can be found in {Or2, pp. 123-133]. These results will be used in Chapter 12.
Theorem 725 (Ostrowski-Reich)

If A is a positive definite matrix and 0 < w < 2, then the SOR method converges for any

choice of initial approximate vector x©@. . O
Theorem 7.26 If A is positive definite and tridiagonal, then po(T,) = [,o(Tj-)]2 < 1, and the optimal choice

of w for the SOR method is

2
W = 5
L+ /T=Tp(T)]

With this choice of w, we have p(T,) = w — 1. ]

EXAMPLE 4 The matrix
4 3 0
A = 3 4 _1 ’
0 -1 4

given in Example 3, is positive definite and tridiagonal, so Theorem 7.26 applies. Since
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1
i 00 0 =3 0 0 —0.75 0
=D (L+U)=|0 { 0[|-3 0 1|=]-075 0 0.25
00 ! 0 1 0 0 0.25 0
we have
—X -0.75 0
Ti— il =| —0.75 —x 0.25
0 0.25 —x
50
det(T; — AI) = —A(A* — 0.625).
Thus,
p(T;) = +/0.625
and
2 2
w = = ~ 1.24
1+ 1~ (TP 1+ /1~0.625
This explains the rapid convergence obtained in Example 1 when using w = 1.25, ]

We close this section with Algorithm 7.3 for the SOR method.

SOR

To solve Ax = b given the parameter w and an initial approximation x@:

INPUT the number of equations and unknowns #; the entries a,;, | < i, j < n, of the
matrix A; the entries b;, 1 < i < n, of b; the entries X0;, 1 < i < n, of XO = x9: the
parameter w; tolerance 7OL; maximum number of iterations N.

OUTPUT the approximate solution xy, ..., x, or a message that the number of iterations
was exceeded.

Step 1 Setk = 1.
Step 2 While (k < N) do Steps 3-6.
Step3 Fori=1,...,n
w(— Zi;l] AijXj — E;:H-l a;;X0; +b;)
a;;

Step 4 If |)x — XO|| < TOL then OUTPUT (xy, ..., x,);
(The procedure was successful.)

STOP.

setx; = (1 —w)XO; +
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Step5 Setk =k+1.
Step6 Fori=1,....,nset XO; = x;.

Step 7 OUTPUT (‘Maximum number of iterations exceeded’ );
(The procedure was successful.)
STOP. -

EXERCISE SET 7.3

1. Find the first two iterations of the Jacobi method for the following linear systems, using

x® =0
a. 3x;— x4+ x3=1. b. 10x; - x =9,
3x; + 6xy + 2x3 = 0. —x1 + 10x; — 2x3 =7,
3x; + 3x; + Tx3 = 4. — 2x; + 10x; = 6.
c. 10x;+ 5x = 6, d. 4xi4+ x~ x34 x4=-2,
Sx; + 10xy — 4x3 = 25, . X1+ 4xy — x3— x4=-—1I,
— dx) + 8xy — x4 = —11, —X1— X+ 5x3+4+ x4 =0,
— X3+ 5x4 = —11. X;— Xo+ x3+3x,=1.
e. dxy + x2+ x3+ X5 = 6,
' —x; — 3%+ X34+ x4 = 6,
2x1 4+ x2 4+ 5x3— X4 — x5 =6,
—x; — X3~ X3+ 4xy =6,
2X; — X3+ X3 +4dx5 = 6.
f. dxy — x — X4 =0,
—x; +4x; — x3 — X5 =5,
— X3 +4x; — x¢ =0,
—x +4xs — x5 =6,
— X — X4 +4xs — xg = =2,
— X3 — x5+ 4xs = 6.

2. Repeat Exercise 1 using the Gauss-Seide] method.

3. Use the Jacobi method to solve the linear systems in Exercise 1, with TOL = 107 in the I
norm.

4. Repeat Exercise 3 using the Gauss-Seidel Algorithm.

5.  Find the first two iterations of the SOR method with @ = 1.1 for the following linear systems,
using x¥ = 0:

a. 3x1 —~ X2+ x3= 1, b. IOJC] - X2 = 0,

3x] + 6.7(2 -+ 2)('3 = 0, —Xi + IO)CQ — 2)(3 = 7,
3x; +3x3 + Txy = 4. ‘ — 2x; + 10x; = 6.
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10.

¢ 10x; 4+ 5x = 6, d. 4x1+ x0— x3+ x4=-2,
5x; + 10xy — dx4 = 25, X1 +4x; — x3— x4 = —1,
— dxy +8x3 — x4 =-—11, —X;1 — X3+ 5x3+ x3 =0,
— X34+ 5x4 = —11. X — X34+ x3+3x4 =1.
e. 4dxi+ x4+ x»+ x5 =6,
—x1 =3+ x+ x4 = 6,
2x1+ X34+ 5x3 — x4— x5=06,
—X; — X2 — X3+ 4x4 = 6,

2xy — x3+ x4+ 4xs = 6.

f. 4x,— x; — X4 =0,
—x1 +4x; — x3 — X5 =3,
— X3+ 4x; — x6 =0,
—X + 4x4 — X5 = 6,
— X — x4 +4x5 — x= -2,
— X3 — X5+ 4xe = 6.

Repeat Exercise 1 using w = 1.3.

Use the SOR method with w = 1.2 to solve the linear systems in Exercise 5 with a tolerance
TOL = 1073 in the I, norm.

Determine which matrices in Exercise 5 are tridiagonal and positive definite. Repeat Exercise
7 for these matrices using the optimal choice of w.

The linear system

2x1 —x3 +x3 = -1,
211 +2x2 +2,I3 34,
—X1 — X2 +2X3 = —5

has the solution (1, 2, —1)’.
a. Show that p(T;) = 2 > 1.
b. Show that the Jacobi method with xX© = 0 fails to give a good approximation after 25

iterations.
c.  Show that p(T) = 3.
d. Use the Gauss-Seidel method with x® = 0 to approximate the solution to the linear

system to within 107> in the I, norm.
The linear system
X1+ 2x —2x3 =1,

X1+ x)+x3 =2,
2x1+2x2+x3 =3

has the solution (1, 2, —1)*.

a. Show that o(T;) = 0.
b. Use the Jacobi method with x® = 0 to approximate the solution to the linear system to

within 107> in the /,, norm.

¢. Show that p(7,) = 2.

d. Show that the Gauss-Seidel method applied as in part (b} fails to give a good approxima-
tion in 25 iterations.
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11.

12.
13.

14.

15.
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a. Prove that

x® — x|l < T

i I =X
T =T |

1x® —xj| < §T)* |x© ~x|| and

where T i1s an n x n matrix with ||T|| < 1 and

x =7x*V pe k=1,2,...,

with x@ arbitrary, ¢ € R”, and x = T'x + c.
b. Apply the bounds to Exercise 1, when possible, using the /.. norm.
Show that if A is strictly diagonally dominant, then ([{7T{l < 1.
Prove Theorem 7.24. {Hint: If A4, ... , A, are eigenvalues of T,,, then det 7, = ]_'L’.’:I A;. Since
det D! == det(D — wlL)~! and the determinant of a product of matrices is the product of the
determinants of the factors, the result follows from Eq. (7.17).]
Suppose that an object can be at any one of n + 1 equally spaced points xp, x;. ... , x,. When
an object is at location x;, it is equally likely to move to either x;_; or x;,; and cannot directly
move to any other location. Consider the probabilities { P;}_, that an object starting at location
x; will reach the left endpoint xo before reaching the right endpoint x,,. Clearly, P, = 1 and
P, = 0. Since the object can move to x; only from x;_; or x;;, and does so with probability %
for each of these locations,

I 1
P=-P_+ =Py, foreachi=12...,n—1,
2 2
a. Show that
-] _% O:-ccvervveonns .Q—
I | :
2 2 : [ P N r‘%‘
0. —%,. 1 X P; 0
- ST U I A
. P, 0
1 i L fn—1 v
-3 1 =3
1
N 0 .............. O —3 IJ

b. Solve this system using n = 10, 50, and 100.
Change the probabilities to & and 1 — « for movement to the left and right, respectively,
and derive the linear system similar to the one in part (a).
d. Repeat part (b) witha = 3.
Use all the applicable methods in this section to solve the linear system Ax = b to within 107
in the /. norm, where the entries of A are

[ 24, when j =i and i =1,2,..., 80,
[j=i+2andi=1,2 78
0.5i, when|’ ~ ' TZHAI= 5008
Lj=z—23ndz=3,4,...,80,
e (j=i+4andi=1,2,...,76
= i=1,2,...,76,
0.25i, when{’ =’
j=i~4andi=56,...,80,
10, otherwise,

and those of bare b; = &, foreachi = 1,2, ... ,'80.



